Производная функции, заданной неявно. Производная параметрически заданной функции


Download 310.18 Kb.
bet1/7
Sana22.04.2023
Hajmi310.18 Kb.
#1381254
  1   2   3   4   5   6   7
Bog'liq
анализ козимжон



План:

  1. Экстремумы функций двух и трёх переменных
  2. Производная функции, заданной неявно.
    Производная параметрически заданной функции


  3. Параметрически заданные функции и полярная система координат


Экстремумы функций двух и трёх переменных

Поздравляю всех читателей сайта с большим событием – после кропотливой и технически сложной разработки темы функций нескольких переменных, наконец-то появилась на свет эта долгожданная статья! Сегодня на уроке мы научимся находить максимумы и минимумы функций двух и трёх переменных, а также обобщим алгоритм решения данной задачи на случай бОльшего количества аргументов. С понятиями точек экстремума и экстремумов вы уже знакомы из статьи об экстремумах функции одной переменной, и для «старших сестёр» эти понятия имеют родственный смысл. Освежим в памяти элементарную терминологию:


– точки экстремума – это общее название точек минимума и максимума;
– экстремумы – это общее название минимумов и максимумов.
Начнём с функции двух переменных  , применительно к которой точки экстремума – это точки плоскости  , а экстремумы – соответствующие значения функции («высоты»). Также экстремумами иногда называют точки самой поверхности.
Да, и сразу важное напутствие для «чайников», нормальных студентов =) и сомневающихся – рассматриваемый материал сам по себе прост, но требует базовых знаний и навыков в нескольких разделах высшей математики. Поэтому если у вас возникнет (или уже возникло) какое-либо недопонимание по ходу изложения, то проставленные ссылки в помощь.
Итак, «действующие лица» следующие: функция  , внутренняя точка  её области определения и  -окрестность данной точки. Для удобства считаем, что окрестность представляет собой круг радиуса  с центром в точке  (в учебной литературе чаще встречается окрестность-квадрат).
Определение: если в некоторой  -окрестности точки  выполнено неравенство  , то говорят, что функция  имеет минимум в точке  .
При этом точка  называется точкой минимума, а соответствующее значение функции («высота») – минимумом. Ещё раз призываю не путаться в терминах!
Простейший пример минимума – это вершина эллиптического параболоида, чаша которого направлена вверх:

Давайте ещё раз внимательно перечитаем определение и вдумаемся в его суть. Сформулированное определение говорит нам о том, что функция достигает минимума в точке  , если существует хоть какая-то  -окрестность этой точки, в которой значение высоты  меньше ВСЕХ ОСТАЛЬНЫХ значений  .
Следует отметить, что в нашем примере под определение подходит вообще любая  -окрестность, т.к. поверхность уходит вверх на бесконечность и никаких точек ниже – нет в принципе. Такой минимум называют глобальным.
А теперь мысленно разверните чашу параболоида вниз – чтобы красная точка стала «вершиной горы».
Определение: если в некоторой  -окрестности точки  выполнено неравенство  , то говорят, что функция  имеет максимум в точке  .
Соответственно, точка  называется точкой максимума, а значение  – максимумом функции.
В случае с нашим параболоидом максимум, естественно, тоже глобальный, но на практике гораздо чаще встречаются локальные экстремумы. Так, например, функция  на нижеследующем чертеже достигает локального максимума (слева вверху) и локального минимума (справа внизу):

Наверное, всем понятно, в чём различие, но всё-таки закомментирую: почему, например, такой максимум называют локальным? Потому что функция на своей области определения достигает и бОльших значений – по правую руку поверхность уходит «за облака», где о красной точке разве что легенды слагают. Таким образом, о «вершине горы» речь идёт лишь на локальном участке области определения. «Гора», кстати, «горЕ» рознь – бывают поверхности, у которых минимумы и максимумы если и различимы на глаз, то выглядят, как пупырышки =) Важно, чтобы существовала пусть даже очень малая  -окрестность точки  , где выполнено условие минимума или максимума (см. определения).
Из вышесказанного следует ещё одна важная вещь, которая опять же касается понятий. Пожалуйста, РАЗЛИЧАЙТЕ и будьте аккуратны в выражениях:

Download 310.18 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling