1 Elementar hodisalar fazosi
Download 0.53 Mb.
|
nazariy oliy matem
- Bu sahifa navigatsiya:
- Ta`rif.
1-misol. Tajriba tangani ikki marta tashlashdan iborat bo`lsin. Bu tajribaga mos elementar hodisalar , , , va elementar hodisalar fazosi .
Agar bilan gerb tushishlari sonini belgilasak, , , , ya`ni ya`ni da aniqlangan funksiya bo`ladi. Tanga simmetrik bo`lganligi uchun deb olib, ning ma`lum qiymat qabul qilish ehtimolligini ham toppish mumkin. Masalan, . 2-misol. Biror qurilmaning vaqt oralig`ida buzilmasdan ishlash vaqtini qaraymiz. Biz elementar hodisalarni ={qurilma momentgacha ishladi va momentda ishdan chiqdi}, kabi aniqlaymiz. Bu holda elementar hodisalar fazosi ko`rinishida bo`lib, kontinium quvvatga ega bo`ladi. Agar bilan qurilmaning vaqt oralig`ida buzilmasdan ishlash vaqtini belgilasak, bo`ladi. Ta`rif. ehtimollik fazosi, o`lchovli fazo (bu yerda , esa dagi Borel to`plamlari -algebrasi) bo`lib , , -o`lchovli funksiya bo`lsa, ya`ni ixtiyoriy uchun (1) bo`lsa, funksiyaga tasodifiy miqdor deyiladi. Agar chekli bo`lsa, tasodifiy miqdorni uning barcha elementar hodisalardagi qiymatlarini keltirish bilan berish mumkin. Masalan 1-misoldagi tasodifiy miqdor
yoki Ta`rif. Agar tasodifiy miqdor chekli yoki sanoqli sondagi qiymatlarnigina qabul qilsa, unga diskret tasoifiy miqdor deyiladi. Boshqacha qilib aytganda tasodifiy miqdor diskret deyiladi, agar sonlar ketma-ketligi mavjud bo`lib, , , va bo`lsa. 11. Download 0.53 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling