1-Mavzu Mavzu: Kirish. Fanning tarkibi mazmuni va elektr manba turlari Reja
Download 1.66 Mb.
|
1-Mavzu Mavzu Kirish. Fanning tarkibi mazmuni va elektr manba t
- Bu sahifa navigatsiya:
- Zaryadlarning sirtiy va chiziqli zichligi
Zaryadlarning hajmiy zichligi
Biror {\displaystyle V} hajmda {\displaystyle e} zaryad joylashgan boʻlsin. U holda shu hajmning {\displaystyle \Delta V} elementida zaryadning {\displaystyle \Delta e} elementi joylashgan boʻladi.Zaryadning hajmiy zichligi tushunchasini quyidagicha ifodalaymiz: {\displaystyle \rho =\lim _{\Delta V\to 0}{\frac {\Delta e}{\Delta V}}} Demak, zaryadning hajm zichligi hajm birligidagi zaryad bilan oʻlchanadi. Fazoning turli nuqtalarida zaryad zichligi turlicha boʻlishi, vaqt oʻzgarishi bilan oʻzgarib turishi mumkin, yaʼni zaryad zichligi {\displaystyle \rho } nuqta va vaqt funksiyasidir. U vaqtda {\displaystyle \rho ={\dfrac {de}{dV}},\ e=\int \rho dV} boʻladi. Zaryadlarning sirtiy va chiziqli zichligi Zaryadning taqsimot sohasi hajm emas, balki {\displaystyle S} sirt yoki {\displaystyle L} chiziq boʻlishi mumkin. U vaqtda, yuqoridagi singari zaryadning sirtiy zichligi {\displaystyle \sigma } va chizigʻiy zichligi {\displaystyle \lambda } taʼriflarini kiritish mumkin Zaryadning sirtiy zichligi yuza birligidagi zaryad bilan, zaryadning chizigʻiy zichligi esa uzunlik birligidagi zaryad bilan oʻlchanadi. Nuqtaviy zaryadga nisbatan zaryad zichligi tushunchasini qoʻllash anchagina qulayliklar yaratadi. Masalan, {\displaystyle e} zaryad absissa oʻqi boʻylab uzluksiz taqsimlangan boʻlsin:{\displaystyle \lambda =\lim _{\Delta x\to 0}{\frac {\Delta e}{\Delta x}}}U vaqtda koordinata boshida joylashgan birlik musbat nuqtaviy zaryad uchun {\displaystyle \lambda } zichlik {\displaystyle x=0} nuqtada cheksizlikka, hamma boshqa {\displaystyle x\neq 0} nuqtalarda nolga aylanib, bu zichlikdan {\displaystyle -\infty } dan {\displaystyle +\infty } gacha olingan integral esa birga teng boʻladi. Mana shu aytilganlardan foydalanib, {\displaystyle \delta }-funksiya tushunchasini kiritish mumkin. Biror ixtiyoriy hajmdagi toʻla zaryad {\displaystyle e=\sum e_{i}=\int \rho ({\textbf {r}})dV}olinayotgan yigʻindi hajmdagi barcha zaryadlar boʻyicha olingan. {\displaystyle \delta }-funksiyadan foydalanib, nuqtaviy zaryadlar sistemasining zaryad zichligi quyidagicha ifodalanadi: Xullas, biror sohadagi nuqtaviy zaryadlarni shu sohada uzluksiz taqsimlangan va zichligi yuqoridagi tenglamada ifodalangan zaryad deb hisoblash mumkin. Agar berilgan sohada ham nuqtaviy zaryadlar (zichligi {\displaystyle \rho _{n}}), ham uzluksiz taqsimlangan zaryadlar (zichligi {\displaystyle \rho _{m}}) mavjud ekan, sohadagi umumiy zaryad {\displaystyle e=\int \rho _{m}dV+\sum e_{i}=\int \rho _{m}dV+\int \sum e_{i}\delta ({\textbf {r}}-{\textbf {r}}_{i})dV=\int \left[\rho _{m}+\sum e_{i}\delta ({\textbf {r}}-{\textbf {r}}_{i})\right]dVe=\int \left[\rho _{m}+\rho _{n}\right]dV=\int \rho dV}boʻladi, demak, umumiy zaryad zichligi esa {\displaystyle \rho =\rho _{m}+\rho _{n}=\rho _{m}+\sum e_{i}\delta ({\textbf {r}}-{\textbf {r}}_{i})} boʻladi. Nazorat savollari? Zaryadlarning hajmiy zichligi haqida ma’lumot bering? Zaryadlarning sirtiy va chiziqli zichligi haqida ma’lumot bering? Download 1.66 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling