12-ma’ruza. Uch sharnirli arka va ramalar
Uch sharnirli arkalarning qo’zg’almas yuklar ta’siridan analitik usulda hisoblash
Download 119.37 Kb.
|
12-ma\'ruza
- Bu sahifa navigatsiya:
- 2.2. Ichki zo’riqishlarni aniqlash
2. Uch sharnirli arkalarning qo’zg’almas yuklar ta’siridan analitik usulda hisoblash2.1. Tayanch reaktsiyalarni aniqlashUch sharnirli arkaga vertikal yuklar ta’sir qilayotgan hol uchun tayanch reaktsiyalarni aniqlaymiz (6.4 – rasm). VA va VB vertikal reak-tsiyalar HA va HB lar esa gorizontal reaktsiyalar bo’ladi. Ularning qiymatini topish uchun muvozanat tenglamasi hamda qo’shimcha to’rtinchi tenglama , yoki tuziladi. Ularni aniqlash tartibi quyidagicha bo’ladi: dan VA aniqlanadi; SMA=0 dan VB aniqlanadi; dan HB aniqlanadi; SX=0 dan HA aniqlanadi. Tekshirish uchun SY=0 va tenglamalaridan foydalanish mumkin. 2.2. Ichki zo’riqishlarni aniqlash6.5-rasm Arkalar uchun eguvchi moment (M), kesuvchi kuch (Q) va bo’ylama kuch(N)lar ichki zo’riqishlar bo’ladi. Ularni quyidagi umumiy formulalar yordamida aniqlanadi. Arkaning ixtiyoriy K kesimidagi eguvchi moment shu kesimning bir tomonidagi hamma kuchlardan kesim og’irlik markaziga nisbatan olingan momentlarning algebraik yig’indisiga teng (6.5 – rasm). MK=VA XK – R1(XK – a1) – R2(XK – a2) – H YK (6.3) yoki (6.4) Demak, arkaning K kesimidagi eguvchi moment (6.4) shu arkaga tegishli bo’lgan oddiy balkaning xuddi shu mos kesimidagi eguvchi moment (6.6 – rasm) va keruvchi kuchdan olingan moment ayirmasiga teng. Ko’ndalang kuchni hisoblash. Arkaning ixtiyoriy K kesimidagi ko’ndalang kuch QK bu kesimdan bir tomonda joylashgan hamma kuchlarni arka o’qining shu nuqtasiga o’tkazilgan normalga tushirilgan proektsiyalarining algebraik yig’indisiga teng (6.5 – rasm). QK = (VA–R1–R2)cosjK–H∙sinjK yoki QK=Q0KcosjK–H∙sinjK (6.5) Bunda –oddiy balka “K” kesimining kesuvchi kuchi (6.6–rasm). 6.6-rasm Bo’ylama kuchini hisoblash. Arkaning istalgan ko’ndalang kesimidagi bo’ylama kuch kesimdan bir tomonda joylashgan hamma kuchlarning arka o’qining “K” nuqtasiga o’tkazilgan urinmaga proektsiyalarining algebraik yig’indisiga teng, NK = S U: chap NK=(VA–R1–R2)sinjK+H∙cosjK yoki NK=Q0KsinjK+H cosjK (6.6) Agar tashqi kuchlar proektsiyalari algebraik yig’indisi arka kesimida siquvchi kuch hosil qilsa, bo’ylama kuchni musbat deb qabul qilamiz. Download 119.37 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling