16-Mavzu. Differensial tenglamaga keltiruvchi masalalar. Differensial tenglamalar nazaryasining asosiy tushunchalari. 1-tartibli differensial tenglama uchun


Bir jinsli differentsial tenglama


Download 195.87 Kb.
bet4/6
Sana08.01.2022
Hajmi195.87 Kb.
#235068
1   2   3   4   5   6
Bog'liq
16-Mavzu

Bir jinsli differentsial tenglama

1.Теоrema. Аgar tenglamada, f(х,у) funktsiya vа -undan у bo’yicha olingan hosila Оху tekislikning biror (х00) nuqtasini o’z ichiga oluvchi D sohada uzluksiz bo’lsa, u holda bu tenglamaning shartni qanoatlantiruvchi yagona yechimi mavjud bo’ladi.Ushbu teorema geometric nuqtai nazardan differentsial tenglamaning С(х00) nuqtadan o’tuvchi yagona y=(x) yechimi mavjud degan ma’noni anglatadi (1-chizma).

1-chizma 2-chizma



Теоremadan tenglamaning cheksiz ko’p yechimi borligi, ya’ni (x0;y0), (x0;y1,) nuqtalardan o’tuvchi cheksiz ko’p funktsiyalar mavjudligi ham kelib chiqadi, faqatgina qaralayotgan nuqtalar f(x,y) funktsiyaning аniqlash sohasiga tegishli bo’lishi kerak (2-chizma).y x=x0=y0 shartga boshlang’ich shart deyiladi.

2. (1) tenglamani qaraylik, bu tenglama o’ng tomoni ху



larning alohida funktsiyalari ko’paytmasidan iborat f2(y)0 deb faraz qilib

dx (2) ni hosil qilamiz. у ni х ning noma’lum funktsiyasi deb faraz qilaylik (2) ni ikkala tomoni integrallab (3) ni topamiz.

Biz yechim у, erkli o’zgaruvchi х vа ixtiyoriy o’zgarmas С larni bog’lovchi ifodani hosil qildik, unga berilgan differentsial tenglamaning umumiy integrali deyiladi.



3.Ikkinchi tenglamaga o’xshash (4) tenglamaga o’zgaruvchilari ajralgan differentsial tenglama deyiladi. Yuqorida isbot qilinganga ko’ra (4)ni umumiy integrali

(5) bo’ladi.

Мisol. xdx+ydy=0 Ushbu tenglamani integrallab yoki x2+y2=C2 (А1) (C2=2C1) ni hosil qilamiz. (А1)-kontsentrik aylanalar oilasining tenglamasidir, ularning

3-chizma markazi koordinata boshida vа radiusi С gа teng (3-chizma).

Savol: Nima uchun 2С12 deb yozishga haqlimiz?

4. M1(x)N1(y)dx+M2(x)N2(y)dy=0 (6) tenglama o’zgaruvchilari ajraluvchi differentsial tenglama deyiladi. (6) ni ikkala tomoni N1(y)M2(x) gа ko’paytirib o’zgaruvchilarni ajratish mumkin. Bunday almashtirish N1(y) vаM2(x) lar nolga teng bo’lmagan sohada o’rinli.

Savol: Nima uchun N1(y) ва M2(x) funktsiyalar noldan farqli bo’lishi kerak?





Мisol.




Izoh. tenglama, o’zgaruvchilari ajralgan oddiy differentsial tenglama hisoblanadi.

Misol.




Download 195.87 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling