3-Mavzu. Matematik analizga kirish


Hosilaga ega bo‘lgan funksiyaning uzluksizligi (Mustaqil ta’lim uchun)


Download 1.72 Mb.
bet28/55
Sana05.01.2022
Hajmi1.72 Mb.
#210242
1   ...   24   25   26   27   28   29   30   31   ...   55
Bog'liq
3-Mavzu

Hosilaga ega bo‘lgan funksiyaning uzluksizligi (Mustaqil ta’lim uchun)

f(x) funksiyaning hosilasi faqat bu funksiya uzluksiz bo‘lgan nuqtalardagina mavjud bo‘lishi mumkinligini ko‘rsatamiz. Oldin ushbu teoremani qaraylik.

Teorema. Agar f(x) funksiya x nuqtada hosilaga ega bo‘lsa, u holda funksiya shu nuqtada uzluksiz bo‘ladi.

Isbot. Faraz qilaylik, f(x) funksiya x nuqtada hosilaga ega bo‘lsin. Demak, ushbu limit mavjud va f’(x) ga teng. Bizga agar funksiya chekli limitga ega bo‘lsa, uni limit va cheksiz kichik yig‘indisi ko‘rinishda ifodalash mumkinligi ma’lum ( ). Bizning holimizda limitga ega bo‘lgan funksiya deb funksiya orttirmasining argument orttirmasiga nisbatini olamiz. U holda ushbu tenglik o‘rinli bo‘ladi:

=f’(x)+,

bu erda =(x) va=0. Bundan funksiya orttirmasi y=f(x+x)-f(x) ni quyidagi ko‘rinishda yozish mumkinligi kelib chiqadi:

y=f’(x)x+x (1)

Bu tenglikdan, agar x0 bo‘lsa, u holda y0 bo‘lishi kelib chiqadi. Bu esa f(x) funksiyaning x nuqtada uzluksizligini bildiradi. Teorema isbot bo‘ldi.



Bu teoremaning teskarisi o‘rinli emas, ya’ni funksiyaning nuqtada uzluksizligidan uning shu nuqtada hosilasi mavjudligi kelib chiqavermaydi. Masalan, y=|x| funksiya x ning barcha qiymatlarida, xususan x=0 nuqtada uzluksiz, ammo x=0 nuqtada hosilaga ega emas. Bu funksiyaning x=0 nuqtadagi orttirmasi y=|x| bo‘lib, undan va nisbatning x0 dagi limiti mavjud emasligi kelib chiqadi, demak f(x)=|x| funksiya x=0 nuqtada hosilaga ega emas.


Download 1.72 Mb.

Do'stlaringiz bilan baham:
1   ...   24   25   26   27   28   29   30   31   ...   55




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling