Noravshan to`plamlarning dekart ko`paytmasi. Ai,i1,n NTostilarning dekart ko`paytmasi-bu
A1A2An{(x(x1,x2,xn)/(x1,x2,xn))}
to`plami, bu yerda xi Xi; x (x1, x2,, xn ) min{ A1 (x1), A2 (x2 ),,An (xn )}.
Misol.Х={10,15,20,25}vaY={5,6,7}ko`rinishdagi asosiy
to`plamlar berilgan. Ushbu to`plamlarda noravshan top’lamostilari
A1{,,,} va A2 {, < 0.5/6 >, < 0.2/7 >}
belgilangan. Ular ustida dekart ko`paytmasi amali bajarish natijasida
quyidagi natijalar olinadi:
< 0.2/(10.7) >, < 0.2/(15,7) >, < 0.2/(20,7) >, < 0.2/(25,7) >};
< 0.5/(10.6) >, < 0.5/(15,6) >, < 0.5/(20,6) >, < 0.3/(25,6) >,
A1 A2 = {< 1/(10,5) >, < 0.8/(15,5) >, < 0.5/(20,5) >, < 0.3/(25.5) >,
NoTlarning ayirmasi. U to‘plamdagi ikkita A va B NTostilarining
ayirmasi - bu A \ B { A\B (x) / x}, x X, bu yerda A\B (x) A(x) B (x)
ko`rinishdagi to`plam.
Misol. Aytaylik,
B (x) 1 B (x) asosan B B(x) 1 B(x) (x1 | 0.65),(x2 | 0.13),(x3 |1),(x4 | 0)
Endi A\ B { A\B (x) / x} A\B (x) A(x) B (x) min(A(x) B (x))
asosan A\B(x1|0.25),(x2|0.13),(x3|1),(x4|0).
NoTlarning simmetrik ayirmasi. U to‘plamdagi ikkita A va B
NoTostilarining simmetrik ayirmasi - bu AB { AB (x) / x}, x X ,
bu yerda AB (x) A\B (x) B\ A (x) ko`rinishdagi to`plam.
Misol. Aytaylik,
1) B (x) 1 B (x) asosan B B (x) 1 B (x) (x1 | 0.65),(x2 | 0.13),(x3 |1),(x4 | 0). Endi A\ B { A\B (x) / x} A\B (x) A(x) B (x) min(A(x), B (x))
asosan A\B (x) A \ B (x1 | 0.25),(x2 | 0.13),(x3 |1),(x4 | 0).
2) A (x) 1 A (x) asosan A A (x) 1 A (x) (x1 | 0.75),(x2 | 0.27),(x3 | 0),(x4 |1). Endi B \ A { B\ A(x) / x} B\ A(x) B (x) A(x) min(B (x), A(x))
asosan B\ A(x) B \ A (x1 | 0.35),(x2 | 0.27),(x3 | 0),(x4 |1).
3) AB (x) A\B (x) B\ A(x) va A(x) B (x) max(A(x),B (x))
formulalarga asosan AB (x) A\B (x) B\ A (x) (x1 | 0.35),(x2 | 0.27),(x3 |1),(x4 |1).
Do'stlaringiz bilan baham: |