309 guruh Matematika analiz fanidan Kurs ishi Topshirdi: Qabul qildi: Р. Маъруфжонов


Yaqinlashuvchi ketma – ketlikning xossalari


Download 168.34 Kb.
bet3/3
Sana30.03.2023
Hajmi168.34 Kb.
#1309723
1   2   3
Bog'liq
Yaqinlashuvchi ketma –ketliklar

2 .Yaqinlashuvchi ketma – ketlikning xossalari
10. Agar xn =a va a>p (a bo`lsa, y holda biror nomerdan boshlab xn >p (xn bo`ladi.
Isbot. a>p bo`lsin, ni 0< tengsizlikni qanoatlantiradigan qilib olamiz. xn=a bo`lganidan >0 uchun n0 natural son topilib, n>n0 larda
a- n bo`ladi. dan a- >p bo`lib, xn>p ekanligi kelib chiqadi.
( a hol ham shu kabi qaraladi).
Natija. Agar xn=a va a>0 (a<0) bo`lsa, u holda biror nomerdan boshlab xn>0 (xn<0) bo`ladi.
20. Yaqinlashuvchi ketma-ketlik yagona limitga ega.
Isbot. Faraz qilaylik (xn) ketma-ketlik a va b limitlarga ega bo`lsin, bunda a. Haqiqiy sonlar to`plamining zichlik xossasiga binoan shunday r son mavjud bo`lib, a bo`ladi. xn=a, a bo`lganligi uchun biror n1 nomerdan boshlab, xnn=b, b>r bo`lganligi uchun biror n2 nomerdan boshlab xn>r bo`ladi. n0=max{n1,n2} deb olsak, n>n0 larda xn va xn>r kelib chiqadi. Bu qarama-qarshilik farazimizning noto`g`ri ekanligini ko`rsatadi.
30. Yaqinlashuvchi ketma-ketlik chegaralangan bo`ladi, yani M son mavjud bo`lib, barcha n lar uchun | xn | tengsizlik o`rinlidir.
Isbot. xn=a bo`lsin. Biror >0 son olaylik. U holda biror nomerdan boshlab
a- n tengsizlik o`rinli bo`ladi. |x1|, |x2|, …, | |, |a- |, |a+ | sonlarning eng kattasini M desak, ixtiyoriy n lar uchun |xn| ekanligi kelib chiqadi. Bundan (xn) ketma-ketlikning chegaralanganligi kelib chiqadi.
Tenglik va tengsizlikda limitga o`tish.
1. Agar barcha n lar uchun xn=yn bo`lib, xn=a, yn=b bo`lsa, u holda a=b bo`ladi.
Isboti limitning yagonaligidan kelib chiqadi.
2. Agar barcha n lar uchun xn>yn bo`lib, xn=a, yn=b bo`lsa, u holda a b bo`ladi.
Isbot. Faraz qilaylik a>b bo`lsin. a va b sonlar orasida r son olsak, a>r>b, xn=a, a>r bo`lgani uchun biror n1, nomerdan boshlab xn>r, yn=b, b<r bo`lgani uchun biror n2 nomerdan boshlab yn bo`ladi. n0=max{n1,n2} deb olsak, n>n0 larda xn>r va yn kelib chiqadi. Bundan xn>yn bo`ladi. Bu qarama-qarshilik farazimizning noto`g`ri ekanligini ko`rsatadi.
3.Agar barcha n lar uchun xn n < zn bo`lib, xn= zn=a bo`lsa, u holda yn=a bo`ladi.(isbotlang)
Teorema'>Ketma-ketlilar yig`indisi, ko`paytmasi va bo`linmasining limiti
Teorema. Agar (x n) va (y n) ketma-ketliklar yaqinlashuvchi bo`lsa, u holda
(xnyn) ketma-ketliklar yaqinlashuvchi bo`lib, (xnyn)= xnyn tenglik o`rinli .
Isbot. xn =a, yn =b desak, u holda xn=a+ n, yn=b+ n deb olish mumkin, bu yerda n va n lar cheksiz kichik miqdorlar.
xnyn=(a+ n) (b+ n)=ab+ nn =ab+ n, bunda n= nn - 1 – lemmaga asosan cheksiz kichik miqdor. Demak, (xnyn)=ab= xn yn.
Teorema. Agar (xn) va (yn) ketma-ketliklar yaqinlashuvchi bo`lsa, (xnyn) ketma-ketlik ham yaqinlashuvchi bo`lib, (xnyn)= xn yn tenglik o`rinli .
Isbot. Oldingi teorema isbotidagi belgilashlarni kiritsak
xnyn=(a+ n) (b+ n)=ab+a n+b n + n n =ab+ n, bunda n= a n+b n + n n - 1,2 – lemmalarga asosan cheksiz kichik miqdor. Demak, (xnyn)=ab= xn yn.
Teorema. Agar (xn) va (yn) ketma-ketliklar yaqinlashuvchi va yn 0 bo`lsa, ( ) ketma-ketlik ham yaqinlashuvchi bo`lib, tenglik o`rinli .
Mоnоtоn o`zgаruvchining limiti hаqidаgi tеоrеmа
Tеоrеmа: Аgаr {xn} kеtmа-kеtlik mоnоtоn o`suvchi bo`lib u yuqоridаn chеgаrаlаngаn bo`lsа, u chеkli limitgа egа bo`lаdi.
Isbоti: Tеоrеmа shаrtigа ko`rа {xn} kеtmа-kеtligimiz yuqоridаn chеgаrаlаngаni uchun u o`zining аniq yuqоri chеgаrаsigа egа bo`lаdi. Fаrаz qilаylik a sоni {xn} kеtmа-kеtlikning аniq yuqоri chеgаrаsi bo`lsin, u hоldа (“Suprеmum”) sup{xn}=a
Аgаr a sоni {xn} kеtmа-kеtlikning аniq yuqоri chеgаrаsi bo`lsа quyidаgi ikkitа shаrt bаjаrilаr edi.
1. xna
2. >0, N n>N bo`lgаndа a-Na bo`lаr edi.
Tеоrеmа shаrtigа ko`rа kеtmа - kеtlik o`suvchi bo`lgаnligi uchun xN < xn bo`lаdi. Mоnоtоn o`suvchi bo`lgаnligidаn а- < xN  a tеngsizlik o`rinli bo`lаdi. Bu tеngsizlikdаn a-n dеb yozishimiz mumkin yoki a-xn< yoki xn-a< bo`lаdi. Bu dеgаn so`z kеtmа - kеtlik limitining tа`rifigа ko`rа dеgаnidir.


Download 168.34 Kb.

Do'stlaringiz bilan baham:
1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling