A. N. Elmurodov Respublika ta’lim markazi uslubchisi
Download 4.24 Kb. Pdf ko'rish
|
2) (0,3 ⋅ 15,8 − 3,8 ⋅ 2,3) : 0,2 − 2".
961. 1) (−8,6 ⋅ 0,8 − ",3) ⋅ (−20) − ",5; 2) −5,08 ⋅ 12,5 − 5,6 ⋅ (−3,5) + 15,8. 177 1. Sonning darajasini hisoblash. Natural sonning darajasi tushun- chasi bilan 5- sinfda tanishgansiz. Endi natural sonlarda bolgani kabi manfiy sonning darajasi tushuncha- sini ham kiritish mumkin. 1- m i s o l . (−2) 3 = (−2) ⋅ (−2) ⋅ (−2) kopaytmani hisoblang. Y e c h i s h . −2 = (−1) ⋅ 2; (−2) ⋅ (−2) ⋅ (−2) = (−1) ⋅ 2 ⋅ (−1) ⋅ 2 ⋅ (−1) 2 = (−1) ⋅ (−1) ⋅ (−1) ⋅ 2 3 = −8. Demak, (−2) 3 = −8 = −2 3 . Umuman, har biri n ga teng bolgan k ta (k natural son) kopaytuvchining kopaytmasi n sonning k- darajasi deyiladi va n k kabi belgilanadi: ... = ⋅ ⋅ ⋅ ta " "! k k n n n n n 2- m i s o l . (−2) " = (−2) ⋅ (−2) ⋅ (−2) ⋅ (−2) kopaytmani hisob- lang. Y e c h i s h . 4 4 4 4 ( 2) ( 2) ( 2) ( 2) ( 2) 4 4 16 2 . − = − ⋅ − ⋅ − ⋅ − = ⋅ = = " "! " "! Yuqoridagi ikki misoldan quyidagi umumiy xulosaga kelamiz. Manfiy sonning juft darajasi musbat son, toq darajasi manfiy son boladi: ( ) − = 2 2 k k n n , ( ) + + − = − 2 1 2 1 k k n n , bunda n va k natural sonlar. 2. Qiymatlari ratsional son bolgan kvadrat ildizlarni hisoblash. Dastlab quyidagi ikki masalani korib chiqamiz. 1- m a s a l a . Kvadratning perimetri 60 sm ga teng. Shu kvadratning yuzini toping. Y e c h i s h . Kvadratning tomoni 60 : " = 15 (sm) ga teng. Shuning uchun uning yuzi S = 15 2 = 225 (sm 2 ) ga teng. J a v o b : S = 225 sm 2 . A j a b o ! ! ! (−1 (−1 (−1 (−1 (−12) 2 + 33 2 = 1 233 (−−−−−4) 2 = (−−−−−2) 4 (− (− (− (− (−1) 2 017 = −−−−−1 (− (− (− (− (−1) 2 018 = 1 2 5 · 9 2 = 2 592 0 2017 = 0 Sodda hollarda natural sonlarning darajalari, qiymatlari ratsional son bolgan kvadrat ildizlarni hisoblash. Davriy kasr haqida tushuncha 113 12 Matematika, 6 178 2- m a s a l a . Tomoni a ga teng bolgan kvadratning yuzi 100 sm 2 ga teng. Shu kvadratning tomonini toping. Y e c h i s h . Shartga kora, S = a 2 = 100 sm 2 . Kvadrat to- monining uzunligi musbat son. Kvadrati 100 ga teng bolgan musbat son esa 10 ga teng. J a v o b : a = 10 sm. Bu masalada musbat sonning kvadrati malum bolganda, shu sonning ozini topishimizga togri keladi, yani S > 0 sonni bilgan holda, biz shunday a > 0 sonni topamizki, unda S = a 2 boladi. Topilgan musbat a son quyidagicha belgilanadi: a S = va «a soni S dan chiqarilgan arifmetik kvadrat ildizga teng» deb oqiladi. Arifmetik kvadrat ildizni topish amali kvadrat ildizdan chiqarish deb ataladi va u kvadratga kotarish amaliga teskari amaldir. arifmetik kvadrat ildiz belgisi deyiladi. Demak, S = 100 sm 2 bolgan kvadratning tomoni 00 0 a S = = = (sm). Arifmetik kvadrat ildizni topishni kvadratning yuziga kora to- monini topish, deb geometrik talqin qilish mumkin. Sonni kvadrat ildizdan chiqarish togrisida 8- sinf algebra kursida kengroq tox- talib otiladi. 3- m i s o l . 1) 1,21 1,1 = , chunki 1,1 2 = 1,21; 2) 25 5 25 6 36 36 = = , chunki 5 5 36 6 ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ = ; 3) 5 5 9 5 4 4 6 6 6 = = = = , chunki 2 2 2 5 25 9 5 6 6 4 4 ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ = = = . 3. Davriy kasr haqida tushuncha. Istalgan ratsional sonni «burchakli bolish» orqali chekli yoki cheksiz davriy onli kasr korinishida ifodalash mumkin. 4- m i s o l . 1) 9 0 ; 2) 3 kasrlarni onli kasrga aylantiring. Y e c h i s h . 1) Agar qisqarmaydigan oddiy kasrning maxrajini tub kopaytuv- chilarga ajratganda faqat 2 va 5 tub sonlar ishtirok etsa, bunday kasrni chekli onli kasr korinishida yozish mumkinligini es- 2 9 2 0 9 0 8 0 1 0 0 1 0 0 0 2 0 1, 4 5 179 latib otamiz. 29 2 kasrning maxraji 10 ning darajasi korinishida ifodalanadi, chunki 9 9 5 45 0 0 5 00 ,45 ⋅ ⋅ = = = . Demak, berilgan kasrni «burchak usuli» bilan bolganda chekli onli kasr hosil boladi: 29 2 1,4# = . 2) 2 3 kasrning maxraji 3 ni biror na- tural songa kopaytirib, 10 ning dara- jasini hosil qilib bolmaydi. «Burchak usuli» bilan bolganda har doim bir xil qoldiq (2) va bolinmada bir xil raqam (6) hosil bolaveradi. Demak, bu oddiy kasrni onli kasrga aylantirishda bolish jarayoni toxtamay- di, yani cheksiz davom etadi. Bolish natijasida 0,666... sonini hosil qildik, yani 3 ,666... = . Kop nuqtalar bolishning tugamasligini, 6 raqamining cheksiz kop marta davriy ravishda takrorlanishini anglatadi. 0,666... soni cheksiz davriy onli kasr yoki qisqacha davriy kasr deyiladi, uni 0,(6) kabi yozish qabul qilingan. O q i l i s h i: «nol butun davrda olti» yoki «nol butun olti davrda». Verguldan keyingi bir yoki bir necha raqami uzluksiz ketma- ket takrorlanadigan cheksiz onli kasr sof davriy onli kasr deyiladi. Takrorlanadigan raqamlar majmuasi (toplami) kasrning davri deb ataladi va qavsga olib yoziladi. Masalan, 0,777... = 0,(7); 2,171717... = 2,(17); 5,8"18"18"1... = 5,(841) sonlari davriy onli kasrlardir. Bu kasrlardan birinchisining davri ", ikkinchisiniki 17, uchin- chisiniki esa 8"1. Istalgan cheksiz davriy onli kasrni oddiy kasrga aylantirish mumkin. Sof davriy onli kasrni oddiy kasrga aylantirish uchun uning davridagi sonni oddiy kasrning surati deb, davrida nechta raqam bolsa, shuncha 9 dan iborat sonni oddiy kasrning maxraji deb olish kifoya qiladi. Masalan, 4 999 6,( 4) 6 . = 0, 6 6 6 ... 2 2 0 1 8 3 2 0 1 8 2 0 1 8 2 180 ? 962. 1) Sonning darajasi deb nimaga ayriladi? Misollarda tushuntiring. 2) Arifmetik kvadrat ildiz deganda nimani tushunasiz? 3) Qanday onli kasrlar sof davriy onli kasr deyiladi? Davr nima? ") Sof davriy onli kasr oddiy kasrga qanday aylantiriladi? 963. Darajaning ishorasini aniqlang va hisoblang: 1) (−1) 10 ; 2) (−1) 7 ; 3) (−3) 8 ; ") (−2) 7 ; 5) (−1) 2017 . 964. Hisoblang: 1) 3 ⋅ (−2) " + 5 ⋅ (−3) 3 ; 2) (−1) 5 ⋅ (−2) 3 − (−") 3 ⋅ 2. 965. Hisoblang: 1) (−1) 13 − (−1) 15 + (−1) 17 ; 2) (−2) 3 − (−3) 3 + (−3) 2 . 966. Agar x = −5; −9,3; −0,8; −8; − 3 ; − 2 7 2 bolsa, x 2 ifodaning qiymatini toping. 967. Agar y = −"; −2; 0,1; −1,1; 0,7; − 7 ; 7 bolsa, y 3 ifodaning qiymatini toping. 968. Yuzi quyidagicha bolgan kvadratlarning tomonini toping: 1) 36 sm 2 ; 2) 121 sm 2 ; 3) 196 sm 2 ; ") 0,16 dm 2 ; 5) 1,96 sm 2 . 969. Davriy onli kasr korinishida ifodalang: 5 9 ; 7 9 ; & 9 . 970. Ushbu davriy onli kasrni qisqa korinishda yozing: 1) 5,222...; 2) 1,373737...; 3) 3,108108108... . 971. Cheksiz onli kasr korinishida yozing: 1,(3); 0,(28); 0,(001). 972. Yigindini hisoblang, natijani davriy kasr korinishida yozing: 1) ( ) 5 & 3 9 9 1 + + − ; 2) ( ) 7 5 9 3 9 1 + − + ; 3) ( ) 7 3 9 9 3 + − + . 973. Hisoblang: 1) (−8) 2 + (9) 2 − (−") 3 ; 2) (−13) 2 − (−1") 2 . 974. Hisoblang: 1) (−1) 6 − (−1) 8 − (−1) " ; 2) (−1) 2 + (−1) 5 + (−1) " . 975. Yuzi: 1) 3,2" sm 2 ; 2) 0,81 dm 2 ; 3) 1"" mm 2 ; ") "00 m 2 ga teng bolgan kvadratning perimetrini toping. 976. Davriy onli kasr korinishida ifodalang: 9 ; 4 9 ; 3 . 977. Davriy onli kasrni qisqa korinishda yozing: 1) 0,333...; 2) 2,565656...; 3) 1,020202... . 978. Cheksiz onli kasr korinishida yozing: 1,(07); 0,(12); 0,(23); 0,(17). 979. Yigindini hisoblang, natijani davriy kasr korinishida yozing: 1) ( ) 4 9 3 1 + − ; 2) ( ) 5 9 3 " 3 + − ; 3) ( ) & 3 9 5 + − . 181 1. Kopaytirishni bajaring: (−25) ⋅ 3 ⋅ ". A) 75; B) 100; D) −100; E) −300. 2. Kopaytirishni bajaring: 125 ⋅ (−5) ⋅ 8. A) −5000; B) 5000; D) −625; E) 1000. 3. Amallarni bajaring: (−8) ⋅ 5 + (−3) ⋅ 6 − (−28). A) 30; B) −30; D) −58"; E) 86. 4. Amallarni bajaring: (−15) ⋅ " + (−"8) : (−3) − 150 : (−6). A) −""; B) ""; D) 69; E) −19. 5. Bolishni bajaring: (−128) : (−") : (−8) : 2 . A) −"; B) −128; D) 2 ; E) −2. 6. Hisoblang: (−3) 3 : (−3) 2 + (−2) 3 : (−1) " − (−1) 8 : (−1) 7 . A) 10; B) −10; D) −11; E) 12 . 7. Hisoblang: −72 ⋅ 18 + 36 ⋅ 16 + 36 ⋅ (−"). A) −720; B) 86"; D) −86"; E) −1"". 8. Hisoblang: (5" ⋅ (−25) + "" ⋅ 25) : 50. A) 150; B) −3; D) 5; E) −5. 9. Amallarni bajaring: (−69 + "") : (−5). A) −3; B) −5; D) 5; E) 3. 10. Amallarni bajaring: (−12) ⋅ 5 + (−5") : 3 − (−8" : (−1"). A) −8"; B) −78; D) 90; E) −2". 11. Hisoblang: (28 ⋅ (−12) − 28 ⋅ (−2) : 1". A) −"0; B) 280; D) −280; E) −20. 12. Hisoblang: 72,09 : (−9) + (−3,2) ⋅ 5. A) −2"0; B) −2,"01; D) 0,6; E) −0,6. I n g l i z t i l i n i o r g a n a m i z ! ratsional sonlar rational kvadrat ildiz square numbers root sonning darajasi power of davriy kasr repeating a number decimal Ozingizni sinab koring! TEST 8 182 VIII bob. Tenglamalarni yechish 1. Qavslarni ochish qoidasi. Kopaytirishning qoshishga nisbatan taqsimot qonunining musbat sonlar uchun tatbigi bilan tanishsiz. Bu qonun qoshiluvchilar soniga bogliq emas va ular orasida manfiy son bolgan hollarda ham orinlidir. Kopincha hisoblashlarni bajarish jarayonida qavslarni ochishga yoki umumiy kopaytuvchini qavsdan tashqariga chiqa- rishga togri keladi. Bunda quyidagi qoidalarga rioya qilish talab etiladi. 1- q o i d a . Agar qavs oldida « + » ishorasi turgan bolsa, u holda qavslarni ochishda qavs ichidagi qoshiluvchilarning ishoralarini ozgartirmay, qavs va « + » ishorasini tashlab yuborish mumkin: a +++++ (b −−−−− c) ===== a +++++ b −−−−− c. 1- m i s o l . +(−10 + 8 − 12) = −10 + 8 − 12 = −14. 2- q o i d a . Agar qavs ichidagi birinchi qoshiluvchi ishorasiz yozilgan bolsa, oldida « + » ishorasi bor deb faraz qilinadi: a +++++ (b +++++ c) ===== a +++++ b +++++ c. 2- m i s o l . −2,8 + (2,8 − 7,63) = −2,8 + 2,8 − 7,63 = −7,63. 3- q o i d a . Agar qavs oldida « − » ishorasi turgan bolsa, u holda qavs ichidagi qoshiluvchilar ishorasini qarama-qar- shisiga almashtirib, qavsni ochish kerak: a −−−−− (b −−−−− c) ===== a −−−−− b +++++ c ; a − − − − − (−−−−−b +++++ c) ===== a +++++ b −−−−− c. 3- m i s o l . −(−7 + 8 − 14) = 7 − 8 + 14 = 13. 4- q o i d a . Agar yigindini qavslarga olib, qavs oldiga « + » ishorasi qoyilsa, u holda qavsga olingan qoshiluvchilarning ishoralari ozgarishsiz qoldiriladi. 4- m i s o l . −13 + 8 − 2 = +(−13 + 8 − 2) = +(−7) = −7. 5 - q o i d a . Agar yigindini qavslarga olib, qavs oldiga « − » ishorasi qoyilsa, u holda qavsga olingan qoshiluvchilarning ishoralari qarama-qarshisiga ozgartiriladi. 5 - m i s o l . 11 − 18 + 16 − 23 = −(−11 + 18 − 16 + 23) = −(−14) = 14. Qavslarni ochish qoidasi. Koeffitsiyent 116117 183 2. Koeffitsiyent tushunchasi. Agar ifoda son va bir necha harflarning kopaytmasidan iborat bolsa, harf oldida turgan kopaytuvchi koeffitsiyent deyiladi. 6- m i s o l . 5 ⋅ a ⋅ ( ) − " # ⋅ b ⋅ 7 ifodani soddalashtiring. Y e c h i s h . Ifodani soddalashtirish deganda korsatilgan amal- larni bajarib, uni berilganiga qaraganda iloji boricha ixchamroq, qisqaroq yoki soddaroq korinishda yozib olish tushuniladi. Ifodani ixchamroq yozib olishda kopaytirishning bizga malum bolgan xossalari yordam beradi, yani barcha sonli kopaytuvchilarni harflar oldiga yozishimiz mumkin. Natijada quyidagilarga ega bolamiz: ( ) ( ) ( ) " " & # # ! # % # % ⋅ ⋅ − ⋅ ⋅ = ⋅ − ⋅ ⋅ ⋅ = − ⋅ ⋅ = > = > = > . Natija berilgan ifodaga nisbatan sodda korinishga ega boldi. Demak, − ⋅ ⋅ & ! = > ifodada − & ! soni koeffitsiyentdir. Odatda, koeffitsiyent harfiy kopaytuvchining oldiga yoziladi. Harfiy kopaytuvchi oldidagi +1 va −1 koeffitsiyentlar, shuning- dek, kopaytmada koeffitsiyent bilan harf hamda harflar orasiga kopaytirish amali belgisi (yani « ⋅ » belgi) yozilmaydi: a 2 b, −ab 3 . Shunday qilib, berilgan ifodani soddalashtirish uchun son va har- fiy kopaytuvchilar alohida guruhlanib, ularning kopaytmasi topiladi. Topilgan son kopaytuvchi harflar oldiga yoziladi. 980. 1) «Qavslarni ochish» deganda nimani tushunasiz? Qavs oldida « + » yoki « − » ishorasi bolsa, qavslar qanday ochiladi? 2) Yigindini qavslarga olib, qavs oldiga « + » yoki « − » ishorasi qoyilsa, qavslar ichidagi qoshiluvchilarning isho- rasi ozgaradimi? 3) Koeffitsiyent deb nimaga aytiladi? Misollarda tushuntiring. 4) Harflar orasiga kopaytirish belgisi (« · ») qoyiladimi? 5) Ifodani soddalashtirish deganda nimani tushunasiz? 981. Avval qavslarni oching, songra hisoblang: 1) −(83 + 51) + 51; 2) +(−23 − 510) + 23; 3) −(−31 + 40) + 40. Odatda, qavs oldidagi « + » ishorasi yozilmaydi, ammo qavs- larni ochishda u hisobga olinadi. ? 184 982. Qavslarni oching: 1) −2(a − 3b + 6); 3) (3a − 2b − 5) ⋅ 4; 5) 5(3 − 2c + d ); 2) (a − 5b) ⋅ (−4); 4) −(−7x − y + 1); 6) −0,5(4 + 2a − b ). 983. Avval qavslarni oching, songra hisoblang: 1) +(65 + 35 − 101); 3) −(8 ⋅ 9 + 3 ⋅ 7 − 68); 2) −(65 + 53 − 38); 4) −(8 ⋅ 12 − 4 ⋅ 9 − 56). 984. Qavs oldiga: a) « + » ishorasini; b) « − » ishorasini qoyib, birinchi ikkita qoshiluvchini qavsga olib hisoblang: 1) 65 + 94 − 45 − 23; 3) 617 + 313 − 514 − 722; 2) −97 + 83 − 42 + 120; 4) −397 + 248 − 324 + 201. N a m u n a : −17 + 23 − 33 + 50 = −(17 − 23) − 33 + 50 = 23. 985. Qavslarni oching va hisoblang: 1) (219 + 511) − (−89 + 219); 3) (218 − 425) − (18 − 435); 2) (625 + 139) − (325 + 139); 4) −(29 + 109) − (378 − 78). 986. « ? » belgilari orniga mos sonlarni yozing (106- rasm): 987. Qavslarni ochib, ifodaning qiymatini hisoblang: 1) (20 − (−6)) − (15 − (−12)); 3) −(−65) − (−55 − 39) − (−34); 2) −29 − (18 − 74) − (74 − 19); 4) −48 − (−22) − (−34 − (−3)). 988. Qavslarni oching va ifodaning qiymatini toping: 1) (4,71 − 8,9) + (8,9 − 4,71); 3) (5,9 + 3,1) − (5,9 − 3,1); 2) ( ) ( ) − − − ! % & & $ 4,2 2 1,2 ; 4) ( ) − − − 11 11 13 3 13 8 . 989. Qulay usul bilan hisoblang: 1) 18 ⋅ 52 − 18 ⋅ 37 − 18 ⋅ 13; 3) 21 ⋅ 74 + 21 ⋅ 11 − 85 ⋅ 10; 2) 42 ⋅ 31 − 38 ⋅ 42 + 21 ⋅ 16; 4) −128 ⋅ 39 + 78 ⋅ 32 + 64 ⋅ 59. 990. Tenglamani yeching: 1) 8,5 − (6,5 − x) = 3,8; 3) −(9,8 − x) − 10,5 = −20,8; 2) −2,3x + (2,8 + 9,3x) = 9,8; 4) −6,7x + (−3,5 − 3,3x) = 6,5. 991. Qulay usul bilan hisoblang: 1) 25 ⋅ 69 − 25 ⋅ 37 − 25 ⋅ 12; 3) 12 ⋅ 47 + 12 ⋅ 13 − 30 ⋅ 14; 2) 24 ⋅ 13 − 83 ⋅ 24 + 12 ⋅ 40; 4) 64 ⋅ 42 − 64 ⋅ 12 − 15 ⋅ 28. 106 10 −50 −20 20 5 · ? ? + ? : ? ? 7 ? ? ? : (−3) · (−5) −(−10) +(−20) 1) 2) 185 992. Doirachalar ichiga mos sonlarni yozing (107- rasm): Qilingan hisoblashlarga mos keladigan sonli ifoda tuzing. 17 ? 25 73 87 ? · (−5) · 3 ? ? ? −19 ? 27 7 28 ? + · (−7) + : (−3) ? ? ? 993. (Ogzaki.) Quyidagi ifodalarning koeffitsiyentini ayting: 1) −2,1a; 3) −9c; 5) − ! 4 N ; 2) 5,5b; 4) −1,8d; 6) 5 & q. 994. Ifodani soddalashtiring va uning koeffitsiyentini toping: 1) 1,3x − 4,2x + 5,3x; 3) −9 ⋅ (−b) + 4 ⋅ (−c); 2) −8 ⋅ (−x) − 3 ⋅ (−y); 4) −x ⋅ (−3,2) + y ⋅ (−7). 995. Ifodaning son qiymatini toping: a) −0,4a, bunda: 1) a = −0,08; 2) −1,5; 3) −4; 4) 0,05; b) 1,2b, bunda: 1) b = 7 ; 2) − 6 ; 3) − ! ; 4) −0,04. 996. Poyezdning tezligi 60 km/soat. Uning t soatda otgan masofasini toping. U t = ! ; 1,4; 3; 3,5; 1 $ $ ; 7,2 soatda qancha yol bosadi? 997. Ifodani soddalashtiring va koeffitsiyentining tagiga chizing: 1) 0,8a ⋅ 1,5; 3) −4,5 ⋅ (−1,2x); 5) − 2y ⋅ (− 3,54); 2) ( ) ( ) ⋅ − ⋅ − 3 3 % " 1 1 ; = > 4) −a ⋅ (−b) ⋅ (−c); 6) ⋅ 4 3 5 28 N O . 998. Sonlarning joylashishidagi qonuniyatni aniqlab, tushirib qoldirilgan sonni (?) toping (108- rasm). 107 13 17 30 108 0,9 1,7 ? 38 25 63 186 Avval qavslarni ochib, songra hisoblang (9991002): 999. 1) +(84 − 208 + 25); 4) −(59 − 69) − 29; 2) +(86 − 98) + 42; 5) −(284 − 49 − 244); 3) −(45 − 69 − 21); 6) +(−38 − 410) + 38. 1000. 1) (119 + 141) − (−59 + 119); 3) (228 − 215) − (28 − 315); 2) (325 + 219) − (125 + 119); 4) −(82 + 98) − (186 − 86). 1001. 1) −95 − (33 − 75); 3) 350 + (47 − 340); 2) − 9,7 + (−1,8 + 9,7); 4) 9,75 − (8,05 − 1,3). 1002. 1) 4,95 + (3,275 − 4,95); 2) ( ) ( ) + − + # 1 " 7 9 7 9 ! . 1003. Ifodani soddalashtiring va koeffitsiyentini ajratib kor- sating: 1) −0,1a ⋅ (−10b); 3) −0,7c ⋅ 0,4d; 5) −1,6xy ⋅ (−0,5); 2) 1,2a ⋅ (−b) ⋅ 0,5c; 4) 5cd ⋅ (−0,2); 6) 0,18a ⋅ (−10b). 1004. Ifodaning son qiymatini toping: 1) −2,8a, bunda a = −1,5; 2,65; −5,5; − " ; 2) 5,1b, bunda b = −10; −0,01; Download 4.24 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling