A. N. Elmurodov Respublika ta’lim markazi uslubchisi
Download 4.24 Kb. Pdf ko'rish
|
0 !
6 4 6 4 6 4 # # # # − ⎛ ⎞ − = + − = + − = + = ⎜ ⎟ ⎝ ⎠ % % 2 2 # # = + = yoki qisqacha: ! # 0 ! % 6 4 # # # − − = = . Bu misolda quyidagi qoidadan foydalanildi: yigindidan sonni ayirish uchun, mumkin bolgan holda, qoshiluvchilarning biridan son- ni ayirib, natijaga ikkinchi qoshiluvchini qoshish kifoya. #3 3- m i s o l . ( ) ( ) % # # # % # ' 2 2 2 ' 2 % 2 % 2 % 2 − = − + = − − = " ! % # 28 # ! ! ' 2 !6 !6 !6 # # # # − = − = + = + = yoki qisqacha: " ! % # 28 # ! ' 2 !6 !6 % 2 # # − − = = . Bu yerda quyidagi qoidadan foydalanildi: sondan yigindini ayirish uchun sondan qoshiluvchilardan biri (qulayi)ni ayirish, nati- jadan ikkinchi qoshiluvchini ayirish mumkin. 4- m i s o l . % ' % 2 ' ' ' ' − = − = , chunki 1 ni istalgan suratli va unga teng maxrajli kasr orqali ifodalash mumkin. 5- m i s o l . ( ) − − = + − = = 6 % 6 % 6 % % % % % ! ("-misolga qarang). 6- m i s o l . − − − − = + = + + = + = ! ! 4 6 ! 4 ' 4 # ! 6 6 6 6 6 & 4 4 ! ! ! yoki qisqacha: − − − = = = ! ! 4 ' 4 # ! 6 6 6 & 4 4 ! ! . Songgi misolda kamayuvchining kasr qismi ayriluvchining kasr qismidan kichik, yani 2 2 ! < . Bunday holda kamayuvchining butun qismidan bir birlik olinadi va u 6 6 kasr korinishida ifo- dalanadi. J a v o b : 5 $ ! . Natural sonlarni qoshish va ayirishga oid barcha qonunlar kasr sonlar uchun ham orinli. Kop hollarda ularni qollash natijasida hisoblash jarayonlari soddalashadi. 285. 1) Bir xil maxrajli aralash sonlarni qoshish va ayirish qoi- dasini ifodalang. Qoshishning qanday qonunlarini bilasiz? ) Har xil maxrajli aralash sonlarni qoshish qoidasini ifo- dalang. 3) Har xil maxrajli aralash sonlarni ayirish qoidasini ifodalang. ") Ayirishning qanday qonunlarini bilasiz? ? #" Yigindini toping (286289): 286. 1) + ! " " ; ) + ! " !7 !7 ! ; 3) + ! $ ; ") + ! ! $ $ $ . 287. 1) + 2 6 ! ! 2 ; ) + # % 4 & ; 3) # 6 2 & + ; ") + % # 0 20 $ ' . 288. 1) ! 5 & $ + ; ) ! " $ + ; 3) 5 9 $ % ! + ; ") ! 5 " $ + . 289. 1) + 2 ! # " ; ) + " 5 2 " 5 ; 3) + 2 ! 5 ! 2 ; ") + 2 $ 7 " 7 . 290. C va D nuqta AB kesmani uchta bolakka boladi. = 2 " AC sm, = " ! CD sm va = & DB sm bolsa, AB ni toping. 291. Ifodaning qiymatini toping: 1) 4 # ' ! 2 % & ' + + ; ) % % 20 !0 # " # + + ; 3) ! # 4 # 2 ! 4 # + + . 292. Qovunning massasi 7 & ! kg, tarvuz qovundan ! " kg ga ogirroq, qovoqning massasi esa tarvuz va qovun massalari yigindisidan & kg ga ortiq. Qovoqning massasi necha kilogramm (13-rasm)? 13 293. Qoshish qonunlaridan foydalanib, yigindini hisoblang: 1) ( ) ( ) + + + + + # % % # 8 8 2! 22 # 22 # 2! ! 2 ! ; ) 5 ! 2 $ $ 5 7 $ 5 7 ' 2 5 + + + + + . Ayirmani toping (294296): 294. 1) 5 $ ! 5 − ; ) 5 5 7 " 7 " − ; 3) % 8 2 # − ; ") % ! 8 6 − . 295. 1) − # ! 6 8 % ; ) − 7 ! & " ; 3) − % 20 8 % ! ; ") 5 ! & 2 & ! − . ## 296. 1) 7 " 9 7 $ " − ; ) − " ! 5 2 % ; 3) 4 # 2 2 − ; ") 5 ! 7 5 − . 297. Bosh idish ! " kg keladi, asal bilan toldirilgani esa 2 $ kg. Idishdagi asal necha kilogramm? 298. Jadvalni toldiring: a 7 ! 7 ' 9 # 7 2 # ! " b # ! ! 5 " ! 0 ! 5 & a + b 2 2 " 3 ! 5 % a − b ! ! " $ 299. Nomalum sonni toping: 1) ! 2 4 x + = ; ) ! % 4 2 2 x − = ; 3) 8 2 2 x + = . 300. 7 5 5 ni hosil qilish uchun 4 # % ga qanday sonni qoshish kerak? 301. Ikkita qopchadagi un 2 # kg, ulardan birida 2 # % kg un bor. Qaysi qopchadagi un kop va qanchaga kop? 302. Ifodaning son qiymatini toping: 1) 4 ! % # 4# 2 $ + − ; ) ( ) # 6 ! 28 % 4 + − ; 3) % # ! 2 8 4 6 8 2 − + − . 303. Sonlarni taqqoslang. Ularning yigindisi va ayirmasini toping: 1) 7 2 ! ... 8 ' " ; ) 7 & # ... # 2 # ; 3) ! $ ... " ! # . 304. C va D nuqta AB kesmani uchta bolakka boladi. Agar = 5 % AB sm, = ! " & AC sm va = 7 ' DB sm bolsa, CD ni toping. 305.1, , 3, #, &, 13, ... sonlar qatoridagi qonuniyatni aniqlang va keyingi uchta sonni yozing. #$ Amallarni bajaring (306307): 306. 1) + − 7 7 5 ! ! " 5 ; ) + − ! 2! 2 2" 2" # " $ ; 3) − + ! 5 2 " $ ! 2 . 307. 1) ! # # % − − ; ) % 8 4 2 ! − − ; 3) − + % 2 ' ! 6 " . 308. Amallarni bajaring: 1) + − 5 ! & & $ % " ; ) + − ! 6 # 28 % 4 ! 2 ; 3) − + 2 ! $ 2 ! % . 309. Tenglamani yeching: 1) ( ) − + = % ! 8 6 4 4 # x ; ) + = + " 2 2 ! ! 5 y . 310. AB kesmaning uzunligi ! # dm ga, CD kesmaning uzunligi esa " 25 2 dm ga teng. Qaysi kesma uzun? Qanchaga uzun? 311. Soroq belgisi orniga mos sonlarni qoying (1"-rasm): −−−−− ! ! 14 ? 10 ? + ? + ? ! " ! 5 1 1# 8 312. Birinchi son 3 7 # ga teng. Ikkinchi son undan 4 7 6 ga ortiq. Uchinchi son shu ikkala son yigindisidan 9 0 % ga kam. Uchala son yigindisini toping. 313. Bir topda 3 8 4 m mato, ikkinchisida esa undan 7 0 ! m kam mato bor. Ikkala topda jami necha metr mato bor? 314. Oylangan sondan 7 8 ayrilsa, u holda 3 8 va 36 sonlari ayirmasiga teng son hosil boladi. Qanday son oylangan? 315. Bir son ikkinchi sondan 7 0 ga ortiq. Ularning yigindisi 7 0 ! ga teng. Shu sonlarni toping. 316. Agar = & # a va = ! ! b bolsa, + − ! 2 a b ifodaning son qiy- matini toping. #% 317. Tenglamani yeching: 1) ( ) − − = 7 3# 28 40 4 2 x ; ) ( ) − + = 9 4 3 2# # 20 # 2 . x 318. 7 6 2 ni hosil qilish uchun 3 4 1 ni qanday songa kamaytirish kerak? 319. Ifodaning qiymatini qulay usul bilan hisoblang: 1) ( ) 7 9 8 2# 3# 2# 8 # − + ; ) ( ) # 8 # 44 3 44 # 2 + − . Amallarni bajaring (320325): 320. 1) + ! 2 7 7 ' ; ) + 5 7 22 22 ! ; 3) + ! 5 5 ! 2 ; ") + 2 2 2 ! . 321. 1) + 3 2 8 3 ; ) + # # 2 6 # ; 3) + 7 # # 2 ; ") + 4 3 9 & . 322. 1) 2 9 $ ! + ; ) ! 5 & $ 1 % + ; 3) & " 5 9 " + ; ") 5 ! $ 0 2 + . 323. 1) − ! ! & & % 2 ; ) − " 5 5 5 ! ; 3) − $ 7 7 2 ; ") − ! ! 5 5 5 . 324. 1) − & 9 ! # 4 ; ) − ! 5 22 4 ; 3) − 5 ! $ " ! 1 ; ") − 7 5 & $ ' 1 . 325. 1) ! 7 0 5 ! − ; ) 7 5 & $ & 4 − ; 3) 5 ! 2 & 5 ! − ; ") " 5 $ ! − . 326. Supermarketga 2 & t un keltirildi. Uning 3 4 2 tonnasi sotildi. Shundan song necha tonna un qoldi? 327. Bir xaltachada 2 kg, ikkinchisida esa undan 5 kg kam konfet bor. Ikkala xaltachada jami necha kilogramm konfet bor? 328. Bir top atlasdan avval # 6 m, songra 3 0 3 m mato qirqib olingandan keyin 2 m mato qoldi. Topda ham- masi bolib necha metr atlas bolgan? 329. Qulay usul bilan hisoblang: 1) + + 7 " & 5 & 2 ! ; ) + − & 5 5 25 " " " ! 2 ; 3) ( ) + − # 8 # 44 3 44 33 3 2 . 330. AB kesma 9 0 dm ga, CD kesma esa ! " dm ga teng. Qaysi kesma uzun? Qanchaga uzun? #& 1. Yigindini hisoblang: + 2 3 . A) 5 $ ; B) 2 5 ; D) 5 ; E) ! . 2. Yigindini hisoblang: + & 2 . A) 5 & ; B) 2 & ; D) 5 ; E) 2 . 3. Ayirmani hisoblang: − 2 3 2 . A) 6 ; B) 3 ; D) 1; E) 2 . 4. Yigindini toping: + ! 2 2 . A) 0 $ ; B) 5 $ ! ; D) 2 5 ! ; E) 2 5 1 . 5. Ayirmani toping: − 3 # 2 2 . A) 0 2 ; B) 5 2 ; D) 0 ! ; E) 2 ! 2 . 6. Amalni bajaring: − 2 7 ! 1 . A) # 7 1 ; B) 2 7 2 ; D) # 7 2 ; E) 2 7 4 . 7. Ifodaning qiymatini toping: − + 3 # # 3 . A) ! ; B) 5 ; D) 5 ; E) 5 . I n g l i z t i l i n i o r g a n a m i z ! surat numerator kasrlarni qisqartirish simplifying fractions maxraj denominator umimiy maxraj common denominator qoshish addition togri kasr proper fraction ayirish subtraction aralash son mixed number Ozingizni sinab koring! TEST 3 59 III bob. Oddiy kasrlarni kopaytirish va bolish 14.1. Oddiy kasrlarni kopaytirish Oddiy kasrlarni kopaytirish qoida- sini keltirib chiqaramiz. M a s a l a . ABCD kvadratning to- moni 1 dm ga teng. Tomonlari 3 # dm va 2 # dm bolgan AKME togri tortbur- chakning yuzini 15- rasmdan foydala- nib toping. 1 - u s u l . Masalani yechishdan avval togri tortburchakning tomonlarini onli kasrda ifodalab olamiz: ! # dm = 0,6 dm, 2 # dm = 0,4 dm. U holda S = 0,6 ⋅ 0,4 = 0, 4 (dm ). Endi topilgan onli kasrni oddiy kasrga aylantiramiz: $ # " $ # , " dm dm dm = = . Bu natijani dastlab berilgan kasrlarni onli kasrga aylantir- masdan ham osongina hosil qilish mumkin. Natijaning $ 2# surati berilgan kasrlar suratlarining kopaytmasi ! ⋅ ga, maxraji esa maxrajlarining kopaytmasi 5 ⋅ 5 ga tengligi korinib turibdi. Ho- sil bolgan $ 2# kasr 3 # va 2 # kasrlarning kopaytmasiga teng bo- ladi. Demak, 3 2 3 2 $ # # # # 2# ⋅ ⋅ ⋅ = = . " " ! 2 dm 5 15 A K B C E M D " " ! 3 dm 5 ! 4 ! 1 4 ⋅ ! 8 = Oddiy kasrlarni va aralash sonlarni kopaytirish 4042 60 - u s u l . ! # # ⋅ ni topish uchun bunday muhokama otkaza- miz. ABCD kvadrat 5 ta bir xil kvadratchaga bolingan, AKME togri tortburchakning yuzi esa shu kvadratchalardan 6 tasiga teng. Shuning uchun uning yuzi $ 2# dm ga teng boladi. Demak, ! 6 # # # ⋅ = (dm ). Bundan korinadiki, surat 6 ni hosil qilish uchun ! ni ga, maxraj 5 ni hosil qilish uchun esa 5 ni 5 ga kopaytirish kerak ekan. $ 2# kasr 3 # va 2 # kasrlarning kopaytmasi boladi. J a v o b : 6 # dm . Kasrni kasrga kopaytirish uchun shu kasrlar: a suratlari kopaytmasini natijaning suratiga yozish kerak; a maxrajlari kopaytmasini natijaning maxrajiga yozish kerak. Harflar yordamida bu qoidani quyidagicha yozish mumkin: k p k p n q n q ⋅ ⋅ ⋅ = , bunda k, n, p, q natural sonlar. 1- m i s o l . 2 " 2 " & 3 # 3 # # ⋅ ⋅ ⋅ = = . J a v o b : & # . Agar mumkin bolsa, kopaytirishni bajarishdan oldin 1-ko- paytuvchining surati va maxrajini -kopaytuvchining maxraji va surati bilan qisqartirib olish maqul boladi. 2- m i s o l . ⋅ ⋅ ⋅ = = # ' ' ' 3 ' 3 # . J a v o b : # . Kopaytuvchilardan bazilari natural son bolsa, ularni max- raji 1 bolgan kasrlar deb qarash mumkin. U holda kasrni natu- ral songa va natural sonni kasrga yuqoridagi qoida boyicha kopaytirish mumkin. 3- m i s o l . " 3 " 3 " 2 2 # # # # # 3 2 ⋅ ⋅ ⋅ = ⋅ = = = yoki qisqacha: " 3 " 2 2 # # # # 3 2 ⋅ ⋅ = = = . J a v o b : 2 # 2 . 4- m i s o l . 7 14 1 1! 1! 1 1! 1! 7 1 ⋅ = ⋅ = = yoki 2 2 % " 3 3 3 3 % ⋅ ⋅ = = = . 61 Natural sonni kasrga va kasrni natural songa kopaytirish uchun: 1- q a d a m . Natural sonni kasr suratiga kopaytirish kerak. - q a d a m . Maxrajning ozini ozgarishsiz qoldirish kerak. Harflar yordamida ushbu qoidani quyidagicha yozish mumkin: ⋅ ⋅ = k m k n n m yoki ⋅ ⋅ = k k m n n m , bunda m, k, n natural sonlar. Agar kopaytuvchilardan biri nolga teng bolsa, u holda ko- paytma ham nolga teng boladi. Aksincha, agar kopaytma nol- ga teng bolsa, kopaytuvchilardan kamida bittasi nolga teng boladi. 5- m i s o l . % % & & 0 0 0 ⋅ = ⋅ = . J a v o b : 0. 6- m i s o l . Agar ( ) # $ # 0 x ⋅ − = bolsa, u holda # $ 0 x − = va demak, # 6 x = . J a v o b : # 6 x = . 14.2. Aralash sonlarni kopaytirish 1- m i s o l . ! ! ! !' " " # " # " # # # ! % ⋅ ⋅ ⋅ = ⋅ = = = . J a v o b : " # % . 1- q o i d a . Aralash sonlarni kopaytirish uchun ularni no- togri kasrga aylantirish, songra ularni kasrni kasrga ko- paytirish qoidasiga kora kopaytirish kerak. Download 4.24 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling