Amaliy ishi Guruh : 652-21 Bajardi : Ziyodulloyev Tekshirdi : Aliqulov Yolqin 25-variant
Download 40.5 Kb.
|
1682880137 (1)
- Bu sahifa navigatsiya:
- To`g`ri tortburchak usuli
- Trapetsiya usuli
- Simpson usuli
- Vatarlar usuli
- Nyuton usuli
O’ZBEKISTON RESPUBLIKASI AXBOROT TEXNOLOGIYALARNI VA KOMMUNIKATSIYANI RIVOJLANTIRISH VAZIRLIGI MUHAMMAD AL-XORAZMIY NOMIDAGI TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI Algoritmlarni loyihalash Amaliy ishi Guruh : 652-21 Bajardi : Ziyodullo Ziyodulloyev Tekshirdi : Aliqulov Yolqin 25-variant 1. Berilgan integral qiymatini: a) to‘g‘ri to‘rtburchaklar; b) trapetsiyalar; c) Simpson usullarida ε=0.001 aniqlikda hisoblang. Aniqlikka erishganlik sharti sifatida |S2n-Sn|<ε tengsizlikdan foydalaning (boshlang‘ich n=10 deb olish mumkin). Natijaga erishish uchun zarur bo‘lgan qadamlar soni va integral taqribiy qiymati chiqariladi. С++ dasturida natijani oling. To`g`ri tortburchak usuli To`g`ri tortburchak usuli #include #include using namespace std; double integral(double a, double b, int n) { double h = (b-a)/n; double sum = 0; for (int i = 0; i < n; i++) { double x = a + (i+0.5)*h; sum += ((x*x + x )*log(x)); } return sum*h; } int main() { double a = 1.0; double b = 3.0; int n = 10; double result = integral(a, b, n); cout << "Natija: " << result << endl; return 0; } Trapetsiya usuli #include #include #include using namespace std; double integral(double a, double b, int n) {
int main() { double a = 1.0; double b = 3.0; int n = 10; double result = integral(a, b, n); cout << "Natija: " << result << endl; return 0;} Simpson usuli #include #include using namespace std; double integral(double a, double b, int n) { double h = (b-a)/n; double sum = ((a*a+a)*log(a) + (b*b+b)*log(b)); for (int i = 1; i < n; i += 2) { double x = a + i*h; sum += 4*((x*x+x)*log(x)); } for (int i = 2; i < n-1; i += 2) { double x = a + i*h; sum += 2*((x*x+x)*log(x)); } return sum*h/3; } int main() { double a = 1.0; double b = 3.0; int n = 10; double result = integral(a, b, n); cout << "Natija: " << result << endl; return 0; } Vatarlar usuli #include #include using namespace std; double f(double x) { return sin(0.5+x)-2*x+0.5; } int main() { double a = 0, b = 1, x0, x, e = 0.00001; int k = 0; if((3*a*a+4*a+1)*(6*a+4) > 0) { x = a; do { x0=x; x = x0 - f(x0) * (b-x0)/(f(b) - f(x0)); k ++; }while(abs(x-x0) > e ); } else { x = b; do { x0 = x; x = a - f(a) * (x0-a)/(f(x0) - f(a)); k++; }while(abs(x-x0) > e); } cout <<"Tenglamaning 1 ta yechimi - (" << x; cout <<")\nShu yechimga olib boruvchi qadamlar soni : " << k; cout << "\n" << f(x); } Nyuton usuli #include #include using namespace std; //Newton method programm double f(double x) { return sin(0.5+x)-2*x+0.5; } double f0(double x) { return cos(0.5+x)-2; } int main() { double a = 0, b = 1, x0, x, e = 0.00001; int k = 1; cin >> x0; x = x0 - f(x0)/f0(x0); while(abs(x-x0) > e) { x0 = x; x = x0 - f(x0)/f0(x0); k++; } cout <<"Tenglamaning 1 ta yechimi - (" << x; cout <<")\nShu yechimga olib boruvchi qadamlar soni : " << k; cout << "\n" << f(x); } Vatarlar usuli b) #include #include using namespace std; double f(double x) { return x*x*x + 3*x + 1; } int main() { double a = 1, b = 2, x0, x, e = 0.00001; int k = 0; if((3*a*a-6*a+12)*(6*a-6) > 0) { x = a; do { x0=x; x = x0 - f(x0) * (b-x0)/(f(b) - f(x0)); k ++; }while(abs(x-x0) > e ); } else { x = b; do { x0 = x; x = a - f(a) * (x0-a)/(f(x0) - f(a)); k++; }while(abs(x-x0) > e); } cout <<"Tenglamaning 1 ta yechimi - (" << x; cout <<")\nShu yechimga olib boruvchi qadamlar soni : " << k; cout << "\n" << f(x); } Nyuton usuli #include #include using namespace std; //Newton method programm double f(double x) { return x*x*x + 3*x + 1; } double f0(double x) { return 3*x*x + 3; } int main() { double a = 1, b = 2, x0, x, e = 0.00001; int k = 1; cin >> x0; x = x0 - f(x0)/f0(x0); while(abs(x-x0) > e) { x0 = x; x = x0 - f(x0)/f0(x0); k++; } cout <<"Tenglamaning 1 ta yechimi - (" << x; cout <<")\nShu yechimga olib boruvchi qadamlar soni : " << k; cout << "\n" << f(x);} Download 40.5 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling