Analytical Mechanics This page intentionally left blank


Download 10.87 Mb.
Pdf ko'rish
bet14/55
Sana30.08.2017
Hajmi10.87 Mb.
#14604
1   ...   10   11   12   13   14   15   16   17   ...   55

x

O

sx

Fig. 7.2


7.3

The mechanics of rigid bodies: dynamics

241

generic case, excluding the possibility that the masses are distributed along a



straight line). The relation (7.15) determines the orientation and the length of

the vector σx.

C

orollary 7.1 If the reference frame is transformed by an orthogonal matrix A,



the components of σ are subject to a similarity transformation

σ (0) = Aσ(0)A

T

.

(7.16)



Because of (7.16) we can state that σ is a covariant tensor of rank 2

(Appendix 4), called the tensor of inertia.

The following properties are immediate.

P

roposition 7.8 The principal axes of inertia are the eigenspaces of the homo-



graphy of inertia and the corresponding moments of inertia are its eigenvalues.

In other words, σx is parallel to x, namely

σx =

J x,


(7.17)

if and only if x has the direction of one of the principal axes of inertia.

Seeking a principal triple of inertia is equivalent to the diagonalisation of (7.11),

because in the principal reference frame, σ(O) has the representation

σ(O) =





J

1

0



0

0

J



2

0

0



0

J

3



⎠ .


(7.18)

Example 7.1

We solve the problem of the determination of two principal axes of inertia when

the third one is known. Let x

3

be the known axis. Then the following three



methods are equivalent.

(1) For every pair of axes x

1

, x


2

in the plane x

3

= 0 let ϕ be the angle by which



it must be rotated to obtain the two axes. We know that I

13

= I



23

= 0 for


any ϕ (Proposition 7.2). Hence it suffices to find ϕ such that I

12

(ϕ) = 0.



(2) Find ϕ in such a way that the matrix

A =


cos ϕ

sin ϕ


− sin ϕ cos ϕ

diagonalises the matrix

I

11

I



12

I

12



I

22

.



(3) Find among the lines passing through O in the plane x

3

= 0 those which are



extremals for the moment of inertia

I(ϕ) = I


11

cos


2

ϕ + I


22

sin


2

ϕ + 2I


12

sin ϕ cos ϕ.

(7.19)


242

The mechanics of rigid bodies: dynamics

7.4

Following the latter method we compute



I (ϕ) = (I

22

− I



11

) sin 2ϕ + 2I

12

cos 2ϕ = 0,



(7.20)

i.e.


tan 2ϕ =

2I

12



I

11

− I



22

,

(7.21)



if I

11

=



/ I

22

. The values of ϕ which follow from (7.21) give two mutually orthogonal



axes.

If I


11

= I


22

the relation (7.20) reduces to I

12

cos 2ϕ = 0 and there are two



possible cases:

(a) I


12

= 0


⇒ the frame we started with is a principal frame;

(b) I


12

=

/ 0



⇒ the principal axes are the bisectors of the quadrants defined by

the axes (x

1

, x


2

).

We conclude this section by recalling an important formula: given two unit



vectors e = (α

1

, α



2

, α


3

), e = (α

1

, α


2

, α


3

) that are mutually orthogonal, we have

e

· σ(O) e =



i,j

I

ij



α

i

α



j

= I


ππ

,

(7.22)



where π, π

are the planes through O whose normals are given by e, e ,

respectively. The proof is left as an exercise.

7.4


Relevant quantities in the dynamics of rigid bodies

(a) Angular momentum

Using equation (6.4) in the definition of the angular momentum, we find that

for a rigid system

L(O) = m(P

0

− O) × v(O) −



n

i

=1



m

i

(P



i

− O) × [(P

i

− O) × ω].



(7.23)

Let us examine the operator

Σ

(O) defined by



Σ

(O) e =


n

i



=1

m

i



(P

i

− O) × [(P



i

− O) × e]

= e

n

i



=1

m

i



(P

i

− O)



2

n



i

=1

m



i

(P

i



− O) [(P

i

− O) · e].



(7.24)

The scalar product with e yields

e

· (O) e = I



e

= e


· σ(O) e

(7.25)


(recall (7.14)), and hence

Σ

(O)e and σ(O)e have the same component on e.



7.4

The mechanics of rigid bodies: dynamics

243

Let e be any unit vector orthogonal to e, and consider the scalar product



of (7.24) with e ; this yields by the definition of the product of inertia I

ee

and



by (7.22),

e

· (O) e = I



ee

= e


· σ(O) e.

(7.26)


Equations (7.25) and (7.26) show that the operators

Σ

(O) and σ(O) coincide.



We then write

L(O) = m(P

0

− O) × v(O) + σ(O) ω.



(7.27)

In particular, if O = P

0

or if O is fixed,



L(O) = σ(O)

ω.

(7.28)



D

efinition 7.4 We say that quantities observed from a reference frame

Σ

with


origin at the centre of mass and axes parallel to those of a fixed reference frame

Σ

, are relative to the centre of mass.



P

roposition 7.9 The reference frames

Σ

and


Σ

measure identical values of the

angular momentum relative to P

0

.



Proof

The proof is based on (7.28), which can also be written as

L(P

0

) = σ(P



0

)

ω



(7.29)

in the two systems, which measure the same value of

ω (recall equation (6.33)).

(b) Kinetic energy

It is easy to find

T =


1

2

m[v(O)]



2

+

1



2

n

i



=1

m

i



[(P

i

− O) × ω]



2

+ mv(O)


· ω × (P

0

− O),



and hence if v(O) = 0

T =


1

2



2

(7.30)


(I is the moment of inertia with respect to the axis of instantaneous rotation),

and more generally, choosing O = P

0

,

T =



1

2

m[v(P



0

)]

2



+

1

2



I

0

ω



2

,

(7.31)



which is known as the K¨

onig theorem (the kinetic energy is the sum of the

rotational energy relative to the centre of mass and of the translational energy

associated with the point (P

0

, m)).


244

The mechanics of rigid bodies: dynamics

7.5

Note that the comparison between (7.30) and (7.31), and the fact that v(P



0

) =


ω × (P

0

−O) if v(O) = 0, shows that the K¨onig theorem is equivalent to Huygens’



theorem for the moments of inertia.

Finally for a precession

T =

1

2



ω · σ(O) ω

(7.32)


and by exploiting (6.38), we find the expression for T in the principal frame of

reference as a function of the Euler angles of that frame:

2T =

J

1



( ˙

θ cos ϕ + ˙

ψ sin θ sin ϕ)

2

+



J

2

( ˙



θ sin ϕ

− ˙ψ sin θ cos ϕ)

2

+

J



3

( ˙


ϕ + ˙

ψ cos θ)


2

.

(7.33)



7.5

Dynamics of free systems

The power of a system of resultant force

R and a resultant torque M(O) acting

on a rigid system can be computed easily by (6.4):

W =


R · v(O) + M(O) · ω.

(7.34)


From (7.34) we can deduce two important consequences. The first is that a

balanced system of forces (

R = 0, M = 0) has zero power when acting on a rigid

system. This is the case for the system of reactions due to rigidity constraints, and

hence rigid bodies belong to the category of systems with smooth fixed constraints.

The second is that the equations of motion (4.19) express the vanishing of

the power of the force system F

i

− m



i

a

i



, for any arbitrary choice of (v(O),

ω),


and hence it is equivalent to the vanishing of the multipliers of v(O) and

ω in


(7.34) (with the inclusion of the contributions of inertial forces) and leads to the

cardinal equations, which we write in the form

ma(P

0

) =



R,

(7.35)


˙

L(P


0

) = M(P


0

).

(7.36)



Hence equations (7.35), (7.36) for an unconstrained rigid body are equivalent

to Lagrange’s equations (4.40) and consequently they are sufficient to study the

motion and the equilibrium of the system; in the latter case they reduce to the

form


R = 0, M = 0.

(7.37)


From this follows a well-known property concerning the motion and equilibrium

of a rigid system, namely that two systems of forces with the same resultant

force and the same resultant moment are equivalent. In particular the weight

force field can be replaced by its resultant force (the total weight applied at the

barycentre).


7.6

The mechanics of rigid bodies: dynamics

245

A more interesting case arises when equation (7.35) is independently integrable;



this is the case if

R depends only on the coordinates of P

0

(not on the Euler



angles). In this case it is possible to first determine the motion of the centre of

mass (starting from given initial conditions) and then integrate equation (7.36),

which describes the motion ‘relative to the centre of mass’ (Definition 7.4 and

Proposition 7.9). This motion is obviously a precession. The study of precessions

is therefore of particular significance. This is considered in the following sections.

7.6


The dynamics of constrained rigid bodies

Suppose that a rigid system is also subject to external constraints, holonomic

and frictionless. Let φ

(e)


be the resultant of the constraint reaction, and

µ

(e)



be

the resultant moment for the same system; then the cardinal equations take the

form

ma(P


0

) =


R

(e)


+ φ

(e)


,

(7.38)


˙

L(P


0

) = M


(e)

(P

0



) +

µ

(e)



(P

0

)



(7.39)

(if as a result of the constraints, the system has a fixed point O, it is convenient

to refer the latter to this point).

Since the motion can be found by means of the Lagrange equations, (7.38) and

(7.39) can be used to determine φ

(e)


and

µ

(e)



, and hence each of the constraint

reactions φ

i

, as long as these constraints are linearly independent. On the other



hand, in this case the number of scalar unknowns appearing in φ

(e)


,

µ

(e)



in

(7.38), (7.39) is equal to the number of degrees of freedom suppressed by the

constraints, and hence in general equations (7.38), (7.39) can be used directly

to determine simultaneously the motion and the constraint reactions. Similar

considerations are valid for the equilibrium.

If the constraints are not smooth it is necessary to acquire additional informa-

tion to balance equations (7.38), (7.39). This can be done by relating the actions

due to friction with the motion of the system. In the static case it is necessary

to define the maximal resistance that the constraint opposes sliding and rotation.

Example 7.2

A homogenous rod AB of mass m and length

has the point A sliding along a

line r in a horizontal plane (Fig. 7.3). All constraints are smooth. At time t = 0

the point A has zero velocity, B is on r and the angular velocity of the rod is

ω

0

. Study the motion of the rod and determine the constraint reaction φ



A

.

Fix the axis x to coincide with the initial configuration of the rod and fix the



origin in the initial position of A. Take as Lagrangian coordinates the x-coordinate

x of A and the angle ϕ; see the figure. As initial conditions we have x(0) = 0,

˙

x(0) = 0, ϕ(0) = 0, ˙



ϕ(0) = ω

0

.



From the first cardinal equation we deduce that the x-component of the linear

momentum is constant. Since the initial velocity of P

0

is orthogonal to the x-axis,



246

The mechanics of rigid bodies: dynamics

7.6

B

P

0

P

0

(0)


(0)

x

A

(0)

w

f

A

Fig. 7.3


P

0

moves along the line orthogonal to the x-axis and passing through P



0

(0), i.e.

x +

1

2



cos ϕ =

1

2



.

(7.40)


Since no work is done on the system, the kinetic energy is conserved and this

implies that it is easy to determine

˙

ϕ

2



=

2



0

1 + 3 cos

2

ϕ

.



(7.41)

The integration of this relation via elliptic functions (see Appendix 2) yields a

complete description of the motion.

Since ˙


L(P

0

) =



1

12

m



2

¨

ϕ and ˙



L(P

0

) = (A



−P

0

)



×φ

A

, we can obtain the expression



for the unique component of φ

A

by differentiating (7.41) and expressing ¨



ϕ as a

function of ϕ:

¨

ϕ =


12ω

2

0



(1 + 3 cos

2

ϕ)



2

sin ϕ cos ϕ.

(7.42)

We finally find



φ

A

=



−m

2



0

(1 + 3 cos

2

ϕ)

2



sin ϕ.

(7.43)


Example 7.3

A material homogeneous system of linear density ρ consists of a circular arc

of opening angle 2α and radius R. The system rolls without sliding along a

horizontal rectilinear guide in a vertical plane. Write the equation of motion and

find the expression for the horizontal component of the constraint reaction. What

is the period of small oscillations?

Let us recall that the distance

0

of the centre of mass G of the arc from



its centre O is

0

= R (sin α)/α and that the moment of inertia with respect to



7.6

The mechanics of rigid bodies: dynamics

247

y

x

G

G

0

O



a

w

f

n

f

t

Fig. 7.4


the line through O orthogonal to the plane of the motion is I

O

= 2αR



3

ρ. The


moment with respect to the parallel through G is then I

G

= I



O

− 2αRρ


2

0

.



Let the Lagrangian coordinate ϕ be chosen as shown in Fig. 7.4 (

|ϕ| < α).

Then the kinetic energy is

T =


1

2

I



G

˙

ϕ



2

+

1



2

2αRρ ˙


G

2

= 2αR



2

ρ ˙


ϕ

2

(R



0

cos ϕ),



given that G = (Rϕ

0



sin ϕ,

0



cos ϕ). The conservation of energy (note that

the constraint reaction has zero power) yields

R

1



sin α

α

cos ϕ



˙

ϕ

2



− g

sin α


α

cos ϕ = constant.

Differentiate with respect to t and divide by ˙

ϕ. This yields

2R

1



sin α

α

cos ϕ



¨

ϕ + R


sin α

α

sin ϕ ˙



ϕ

2

+ g



sin α

α

sin ϕ = 0.



The component φ

t

of the constraint reaction is given by



φ

t

= 2αRρ¨



x

G

= 2αR



2

ρ ¨


ϕ

1 +


sin α

α

cos ϕ



+

sin α


α

sin ϕ ˙


ϕ

2

.



If initially ϕ(0) = 0, ˙

ϕ(0) = ω


0

, what must ω

0

be in order for



max


| < α? Note

that the motion is periodic; for small oscillations we have

¨

ϕ +


g

2R

(sin α)/α



1

− (sin α)/α

ϕ = 0,

from which the period is immediately computed.



What happens when α

→ π?


Example 7.4

Consider the following model of the automatic opening of a gate. A homogeneous

rod AB of length l and mass m rotates around the point A in a horizontal plane.


248

The mechanics of rigid bodies: dynamics

7.6

C

F

P

B

A

(0)

(0)

x

w

Fig. 7.5


A retractible (or extensible) arm is attached to one of its points, P say. The arm

is then CP , with C different from A, and it is activated in such a way that its

length has a constant time derivative. Compute the motion of the rod, the force

applied by its extensible arm, and its power.

With reference to Fig. 7.5, suppose as an example that ϕ(0) = 0. The initial

length of the arm is

0

= [(R


−x

c

)



2

+ y


2

c

]



1/2

, with R = AP , and the motion of the

rod can be deduced by writing that P C

2

= (



0

− vt)


2

, where v = dP C/dt, i.e.

(R cos ϕ

− x


c

)

2



+ (R sin ϕ

− y


c

)

2



= (

0

− vt)



2

,

and hence



x

c

cos ϕ + y



c

sin ϕ =


1

2R

[R



2

+ x


2

c

+ y



2

c

− (



0

− vt)


2

].

(7.44)



Obviously there is a bound on t, because

0

− vt must always be greater than



the minimum possible distance between P and C, which is R

− (x


2

c

+ y



2

c

)



1/2

.

Equation (7.44) yields ϕ = ϕ(t), e.g. by using the formulae



cos ϕ =

1

− θ



2

1 + θ


2

,

sin ϕ =



1 + θ


2

,

with θ = tan (ϕ/2).



Supposing that the constraint in A is smooth (what must be changed

otherwise?), the force F applied at P can be obtained from the equation

˙

L(A) = (P



− A) × F,

(7.45)


7.6

The mechanics of rigid bodies: dynamics

249

by exploiting the fact that F = F (C



− P )/|C − P |, with

C

− P



|C − P |

=

x



c

− R cos ϕ

0

− vt


,

y

c



− R sin ϕ

0

− vt



and knowing that ˙

L(A) =


1

3

m



2

¨

ϕ. Hence one finds



F (t) =

1

3



m

2

¨



ϕ

0

− vt



R(y

c

cos ϕ



− x

c

sin ϕ)



(note that the denominator vanishes in correspondence with the extreme values

of P C).


For the power W = F(t) (C

−P )/|C −P |· ˙P = ˙L ˙ϕ we can deduce the expression

W =

1

3



m

2

˙



ϕ ¨

ϕ.

Try to obtain the explicit solution in the case that x



c

= 0, y


c

=

1



4

R.

How should one modify the problem if instead of knowing the velocity of P



one knows the intensity of the force F (e.g. if it is known that F is constant)?

Or the power of F as a function of time?

We conclude with a brief review of the dynamics of systems consisting of more

rigid components constrained among them or from the exterior. If the constraints

are smooth, the problem of motion (or of the equilibrium) can be solved using the

Lagrange equations. However, if one wants to determine the reactions associated

with the internal constraints one must write the cardinal equations for each rigid

component. A typical example is the case of a hinge between two rigid bodies,

when a pair of opposite forces is applied at the hinge.

Example 7.5

Consider the system described in Example 6.1 (Fig. 6.3), but now suppose that

the rods AB, CD have masses equal to m

1

and m


2

, respectively, that the system

is in a horizontal plane and that the constraints are frictionless. Study the motion

in the absence of active forces, and determine the constraint reaction at the point

D, for generic initial conditions α(0) = α

0

, ˙



α(0) = ω

0

.



One immediately obtains the equation of motion requiring that the kinetic

energy T =

1

6

(m



1

2

1



˙

α

2



+ m

2

2



2

˙γ

2



) is conserved, and recalling that ˙γ =

− ( ˙α + ˙β) =

− ˙α[1 + ξ cos α(1 − ξ

2

sin



2

α)

−1/2



], where ξ = /

2

. We suppose that we are far



from the critical configurations described in the original example.

We thus find

1

6

m



1

2

1



+ m

2

2



2

1 + ξ


cos α

(1

− ξ



2

sin


2

α)

1/2



2

˙

α



2

= constant,



250

The mechanics of rigid bodies: dynamics

7.7

and we obtain ˙



α as a function of α and, by differentiation, we also find ¨

α as a


function of α. Let φ be the force applied on the rod AB by the constraint in D.

The second cardinal equation for the rod AB with respect to the point A, i.e.

1

3

m



2

1

¨



α = φ

2



2

+ 1


− 2ξ cos γ(α))

1/2


yields the determination of φ as a function of α.

7.7


The Euler equations for precessions

Consider a material rigid system with a fixed point O. If the constraint is

frictionless, the equation of motion is

˙

L(O) = M(O),



(7.46)

and hence is a system of three second-order differential equations for the Euler

angles. By integrating equation (7.46) with prescribed initial conditions, we obtain

from (7.38) the reaction applied on the constraint (or rather the equivalent

resultant of the system of reactions which physically realise the constraint).

If the constraint is not smooth, it presents a friction torque

µ(O), which must

be expressed in terms of

ω. As an example,

µ(O) = − kω,

(7.47)

with k a positive constant. Thus the equation



˙

L(O) = M(O) +

µ(O)

(7.48)


describes the motion of the system.

We now want to examine the expression for ˙

L as a function of

ω and ˙ω. One

must start from (7.28), stating that L(O) = σ(O)

ω, but expressing σ(O) in a

body frame, because otherwise σ(O) would depend on the Euler angles.

To obtain

˙

L(O) recall the relation between the absolute and relative



derivative (6.25):

˙

L(O) = σ(O) ˙



ω + ω × L(O).

(7.49)


It is convenient to choose as the body frame the principal frame of inertia

relative to O. We thus find the Euler equations

J

1

˙



ω

1

= (



J

2

− J



3

) ω


2

ω

3



+ M

1

(O) + µ



1

(O),


J

2

˙



ω

2

= (



J

3

− J



1

) ω


3

ω

1



+ M

2

(O) + µ



2

(O),


J

3

˙



ω

3

= (



J

1

− J



2

) ω


1

ω

2



+ M

3

(O) + µ



3

(O).


(7.50)

The initial value problem for (7.50) naturally has a unique solution, under the

usual regularity assumptions for M and

µ.


7.8

The mechanics of rigid bodies: dynamics

251

Remark 7.3



If M and

µ depend only on ω, then equations (7.50) yield a first-order non-linear

system for ω

1

, ω



2

, ω


3

. The phase space for equations (7.50) reduces to the space

of coordinates ω

1

, ω



2

, ω


3

.

One such case is the trivial case of precessions by inertia, which happens when



there is zero torque with respect to the pole of the precession. This case deserves

a more detailed study.

7.8

Precessions by inertia



Inertia precessions have particularly simple kinematic properties, which are a

direct consequence of the first integrals

L(O) = L

0

(7.51)



(vanishing moment of the forces) and

T = T


0

(7.52)


(vanishing work), where L

0

and T



0

are determined by the initial value of

ω:

ω(0) = ω


0

.

(7.53)



(Indeed L

0

= σ(0)



ω

0

, T



0

=

1



2

2



0

.) Note that equation (7.52) is not independent

of equation (7.51). Both follow from the Euler equations, which are now written as

J

1



˙

ω

1



= (

J

2



− J

3

) ω



2

ω

3



,

J

2



˙

ω

2



= (

J

3



− J

1

) ω



3

ω

1



,

J

3



˙

ω

3



= (

J

1



− J

2

) ω



1

ω

2



,

(7.54)


and simply express the vanishing of ˙

L(O).


3

The most interesting result concerning these precessions is the following, which

yields a description of the motion alternative to that given by the Poinsot cones.

T

heorem 7.1 (Poinsot) In the case of an inertia precession, the ellipsoid of



inertia relative to the rod rolls without sliding on a fixed plane.

Proof


At each instant, σ(0)

ω = L


0

. We recall the geometric construction of σ(0)

ω

(Section 7.3), and we can deduce that the ellipsoid of inertia, at the point where



it intersects the axis of instantaneous rotation, is tangent to a plane π orthogonal

to L


0

(Fig. 7.6).

3

To obtain (7.52) from (7.54) multiply the latter by



ω

1

,



ω

2

,



ω

3

, respectively, and add



them term by term. This yields ˙

T = 0.


252

The mechanics of rigid bodies: dynamics

7.8

O

a

A

B

h


Download 10.87 Mb.

Do'stlaringiz bilan baham:
1   ...   10   11   12   13   14   15   16   17   ...   55




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling