Andijon fakulteti


Murakkab funksiyani differensiallash


Download 61.69 Kb.
bet3/4
Sana18.06.2023
Hajmi61.69 Kb.
#1573403
TuriReferat
1   2   3   4
Bog'liq
Differensial hisob

Murakkab funksiyani differensiallash
va bo‘lsin. U holda funksiya erkli argumenti
dan va oraliq argumenti dan iborat murakkab funksiya bo‘ladi.
5-teorema. Agar funksiya nuqtada hosilaga ega bo‘lsa va funksiya mos nuqtada hosilaga ega bo‘lsa, u holda murakkab funksiya nuqtada differensiallanuvchi va

bo‘ladi.
Isboti. funksiya nuqtada differensiallanuvchi bo‘lgani uchun
bo‘ladi. Bundan .
funksiya nuqtada hosilaga ega. Shu sababli funksiya
nuqtada uzluksiz va da .
U holda

Bundan yoki
.
Shunday qilib, , ya’ni murakkab funksiyaning hosilasi berilgan funksiyaning oraliq argument bo‘yicha hosilasi bilan oraliq argumentning erkli argument bo‘yicha hosilasining ko‘paytmasiga teng.
Bu qoida oraliq argumentlar bir nechta bo‘lganda ham o‘z kuchida qoladi.
Masalan, bo‘lsa, bo‘ladi.


Murakkab funksiyaning hosilasi


Murakkab funksiyaning hosilasi. Aytaylik, u=(x) funksiya (a,b) intervalda, y=f(u) funksiya esa (c;d) da aniqlangan bo‘lib, bu funksiyalar yordamida y=f((x)) murakkab funksiya tuzilgan bo‘lsin (bunda, albatta, x(a,b) da u=(x)(c,d) bo‘lishi talab qilinadi).
Teorema. Agar u=(x) funksiya x(a,b) nuqtada hosilaga ega, y=f(u) funksiya esa u=(x) nuqtada hosilaga ega bo‘lsa, u holda y=f((x)) murakkab funksiya x nuqtada hosilaga ega va
(f((x)))’=f’(u)’(x) (1)
formula o‘rinli bo‘ladi.
Isboti. u=(x) funksiya x nuqtada hosilaga ega bo‘lganligi uchun uning x nuqtadagi orttirmasini (2.1) formuladan foydalanib
u=’(x)x+x (2)
ko‘rinishda yozish mumkin, bu erda x0 da 0.
Shunga o‘xshash, y=f(u) funksiyaning u nuqtadagi orttirmasini
y=f’(u)u+u (3)
ko‘rinishda yozish mumkin, bunda u0 da 0.
So‘ngi (3) tenglikdagi u o‘rniga uning (2) tenglik bilan aniqlangan ifodasini qo‘yamiz. Natijada
y=f’(u)(’(x)x+x)+(’(x)x+x)= f’(u)’(x)x+(f’(u)+’(x)+)x
tenglikka ega bo‘lamiz.
Agar x0 bo‘lsa, (2) tenglikdan 0 va u0 bo‘lishi, agar u0 bo‘lsa, u holda (3) tenglikdan 0 ekanligi kelib chiqadi. Bulardan esa x0 da f’(u)+’(x)+ cheksiz kichik funksiya ekanligi kelib chiqadi, uni  bilan belgilaymiz.
Shunday qilib, y=f’(u)’(x)x+x tenglik o‘rinli. Bundan = f’(u)’(x)+ va =f’(u)’(x) o‘rinli ekanligi kelib chiqadi. Bu esa y’= f’(u)’(x) ekanligini isbotlaydi.
Misol. y= funksiyaning hosilasini toping.
Yechish. Bu erda y=u4, u= . Demak, y’=(u4)’ ’= =4u3 =8 .
Amalda (1) tenglikni
yoki yx’=yu’ux
ko‘rinishda yozib, quyidagi qoida tarzida ifodalaydi:
Murakkab funksiyaning erkli o‘zgaruvchi bo‘yicha hosilasi oraliq o‘zgaruvchi bo‘yicha olingan hosila va oraliq o‘zgaruvchidan erkli o‘zgaruvchi bo‘yicha olingan hosilalar ko‘paytmasiga teng.
Bu qoidani quyidagicha talqin qilish mumkin: agar berilgan nuqtada y o‘zgaruvchi u ga nisbatan yu marta tez, u esa x ga nisbatan ux marta tez o‘zgarsa, u holda y o‘zgaruvchi x ga nisbatan yu’ux marta tez o‘zgaradi, ya’ni yx’=yu’ux.
Yuqoridagi qoida uchta, umuman chekli sondagi hosilaga ega bo‘lgan funksiyalar kompozitsiyasi uchun ham o‘rinli. Masalan, agar y=f(u), u=(t), t=h(x) bo‘lsa, u holda yx’=yu’ut’tx tenglik o‘rinli bo‘ladi.

Murakkab funksiya yoki funksiyaning funksiyasi tushunchasini qaraymiz.


Agar y = f (u) , u = φ (x) lar o‘z argumentlarining differensiallanuvchi funksiyalari bo‘lsa, y = f ( φ (x)) murakkab funksiya x bo‘yicha hosilaga ega bo‘lib, u



Download 61.69 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling