x = (x1, x2, …, xn) vektorning qarama-qarshi vektori deb -x = (-x1, - - x2, …, -xn) vektorga aytiladi. n ta nollardan iborat (0, 0, …, 0) tizimga n o`lchovli nol vektor deyiladi va θ harfi bilan belgilanadi.
Ikki n o`lchovli x = (x1, x2, …, xn) va y = (y1, y2, …, yn) arifmetik vektorlar berilgan bo`lsin.
xi = yi (i = {1,2, … , n}) munosabatlar o`rinli, ya`ni vektorlarning har bir mos koordinatalari o`zaro teng bo`lsa, x va y vektorlarga o`zaro teng vektorlar deyiladi. x va y vektorlarning tengligi x = y ko`rinishda yoziladi.
2. Arifmetik vektorlar ustida chiziqli amallar va ularning xossalari
n o`lchovli arifmetik vektorlar ustida chiziqli amallar quyidagicha bajariladi:
Berilgan x va y vektorlarni qo`shganda ularning mos koordinatalari qo`shiladi: x + y = (x1 + y1; x2 + y2; …; xn + yn).
Berilgan x vektorni k haqiqiy songa ko`paytirganda uning har bir koordinatasi k marta ortadi: kx = (kx1; kx2; …; kxn).
Vektorlar ustida chiziqli amallar quyidagi xossalarga bo`ysinadi:
1) x + y = y + x; 5) (α + β) x = α x + β x;
2) x + (y + z) = (x + y) + z; 6) α (β x) = (α β) x;
3) x + (- y) = x – y ; 7) x + θ = x;
4) α (x + y) = α x + α y; 8) x 1 = x ,
bu yerda, x, y va z – arifmetik vektorlar, α va β esa haqiqiy sonlar.
Do'stlaringiz bilan baham: |