Arifmetik vektorlar va ular ustida amallar


Chiziqli bog`liq va chiziqli erkli vektorlar sistemalari


Download 120.5 Kb.
bet6/8
Sana20.12.2022
Hajmi120.5 Kb.
#1035972
1   2   3   4   5   6   7   8
Bog'liq
maktabgacha yosh davri bolalarida diqqat barqarorligini taminlashning psixologik xususiyatlari

7. Chiziqli bog`liq va chiziqli erkli vektorlar sistemalari

n o`lchovli m ta vektorlardan iborat (*) vektorlar sistemasi berilgan bo`lsin.


a1x2 a2x2 + … + amxθ (bu yerda θ - n o`lchovli nol vektor) vektor tenglama yoki shuning o`zi m ta noma`lumli n ta chiziqli bir jinsli tenglamalar sistemasini tuzamiz.
a1x2 a2x2 + … + amxm=θ vektor tenglama aniq bo`lib, yagona trivial (nol) yechimga ega bo`lsa, (*) vektorlar sistemasi o`zaro chiziqli bog`lik bo`lmagan yoki chiziqli erkli vektorlar sistemasi deyiladi.
a1x2 a2x2 + … + amxm θ vektor tenglama aniqmas bo`lib, trivial yechimdan tashqari notrivial (nolmas) yechimlarga ham ega bo`lsa, (*) vektorlar sistemasi chiziqli bog`lik sistema deyiladi. Aniqlik uchun nolmas (x1; x2; …; xm) yechimda xm≠0 bo`lsin. Unda

a(m) = a1 a2- … am-1

munosabat o`rinli bo`lib, (*) vektorlaridan biri qolganlarining chiziqli kombinatsiyasiga teng. Bu esa sistemaning chiziqli bog`liqligini ang-latadi.


Agar vektorlar sistemasi yagona nolmas vektordan tashkil topgan bo`lsa chiziqli erkli; yagona nol vektordan iborat bo`lsa, chiziqli bog`-liqdir. Chiziqli erkli sistemaning har qanday qism osti sistemasi – chi-ziqli erkli, chiziqli bog`liq sistemaning har qanday kengaytirilgan siste-masi esa chiziqli bog`liqdir. Demak, tarkibida nol vektor mavjud har qanday vektorlar sistemasi chiziqli bog`liqdir.
Berilgan sistema vektorlari koordinatalaridan

matritsa tuzamiz.
(*) vektorlar sistemasining chiziqli erkli yoki chiziqli bog`liqligi quyidagi teorema yordamida aniqlanadi.

Download 120.5 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling