Axborot tizimlari


Download 2.86 Mb.
Pdf ko'rish
bet102/148
Sana15.08.2023
Hajmi2.86 Mb.
#1667244
1   ...   98   99   100   101   102   103   104   105   ...   148
Bog'liq
21-Axborot-tizimlari-2013-oquv-qollanma-R.X.Alimov-va-bosh (1)

p – kirish vektori (input vector); 
R– kirish elementlari soni (number of input elements); 
w– og’irliklar vektori (weight vector); 
b– surilish (bias); 
n– kirishning og’irliklarga ko’paytirilgan va surilgan qiymati (wpqb); 
f– transfer funktsiya (transfer function); 
a– chiqish (output). 
Neyronga kirish vetori p beriladi. Kirishlarning barchasi bir xil ta’sir kuchiga 
ega bo’lmaydi. SHuning uchun ma’lum kirishning ta’sir kuchini boshqarish 
maqsadida og’irlik w tushunchasi kiritilgan. Xar bir kirish qiymati p og’irliklar vetori 
w ning mos elementiga ko’paytirilib natijalar jamlanadi (ya’ni wp+p
1
w
1,1+
p
2
w
1,2 
+
…p
R
w
1,R
). Summaga surilish qiymati b qo’shiladi. b xam og’irlik w ga juda 
o’xshash, ammo uning «kirish» qiymati o’zgarmas 1 (bir) konstantadir (ya’ni b kirish 
qiymati emas). Natijada transfer funktsiyaning kirish qiymati n xosil bo’ladi (ya’ni 
n+wp+b). Bu qiymat transfer funktsiya (uzatish funktsiyasi)ga parametr sifatida 
berilib neyronning chiqishi a topiladi. 
w va b neyronning sozlanadigan parametrlaridir. Ana shu parametrlar 
o’zgartirilib neyron ma’lum bir funktsiyani bajaradigan xolga keltiriladi. SHu jarayon 
neyronni o’rgatish deb yuritiladi. Neyron to’rlarning markaziy g’oyasi xam ana 
shunda: neyronlarning w va b qiymatlarini o’zgartirib, ya’ni o’rgatib ixtiyoriy 
vazifani bajaradigan xolga keltirish mumkin. Neyronni sxematik ravishda 
quyidagicha ifodalash mumkin: 


169 
Neyron kirish qiymatlarini og’irliklarga ko’paytmasini jamlabgina qolmasdan 
ma’lum bir funktsiya – transfer funktsiyada xam qayta ishlaydi. Transfer funktsiya 
sifatida 
chiziqli, 
zinali, 
logarifmik-sigmoida, 
tangensoida 
funktsiyalaridan 
foydalaniladi. qanday funktsiyadan foydalanish aniq masalaga bog’liq.
Bitta neyronning funktsional quvvati juda past, lekin uning afzalliklaridan biri – 
ko’plab neyronlar birlashtirilib, quvvati oshirilib ishlatilishi mumkin.
quyida S dona neyrondan tashkil topgan 1 qatlam(layer)li neyron to’r keltirilgan: 
R – kirish elementlari soni; 
S – birinchi qatlamdagi neyronlar soni; 
Og’irliklar vektori W matritsasining qatorlari neyronlarning indeksini, ustunlari 
esa kirish indekslarini ifodalaydi, ya’ni:
w
1,1
– birinchi neyronning birinchi kirishga og’irligi; 
w
1,2
– birinchi neyronning ikkinchi kirishga og’irligi; 
w
2,1
– ikkinchi neyronning birinchi kirishga og’irligi; 
w
S,R
– Sinchi neyronning Rinchi kirishga og’irligi. 


170 
Tushunish osonroq bo’lishi uchun yuqoridagi detalьniy sxemani quyidagi soddaroq 
ko’rinishga keltirish mumkin: 
Neyronlarning bunday tarzda qatlamga biriktirilishi kirish signallarini barcha 
neyronlarga uzatilishi, neyronlar xar biri o’zi mustaqil ishlashi va xar bir neyronning 
chiqishini aloxida-aloxida olish imkononi beradi. Bundan tashqari ko’plab sondagi 
neyronlarni bitta setga birlashtirganda qo’yilagan masalani echish uchun yaroqli 
arxitekturani xosil qilish mumkin bo’ladi.
Odatda uchraydigan masalalarni echish uchun bir emas ko’p qatlamli neyron 
to’rlar talab qilinadi. Ko’p qatlamli neyron to’rlarda birinchi qatlam kirish qatlami 
(input layer), oxirgi qatlam chiqish qatlami (xutput layer) va boshqa barcha ichki 
qatlamlar berkitilgan qatlamlar (hidden layers) deb nomlanadi.
Quyida ko’p qatlamli neyron to’rga misol tariqasida 3 qatlamli neyron to’r 
keltirilgan: 
Birinchi qatlamdagi neyronlarning og’irlik matritsasi IW (Input Weights) 
sifatida belgilangan. Keyingi barcha qatlamlarda esa LW (Layer Weights) tarzida 
belgilangan. 
Sxemadan ko’rish mumkin birinchi qatlamning chiqishi a
1
ikkinchi qatlamga 
kirish sifatida berilmoqda va mos ravishda ikkinchi qatlamning chiqishi a
2
uchinchi 
qatlamning kirishiga berilmoqda. Butun setning chiqishi – oxirgi qatlamning chiqishi 
a
3
dir. 


171 
Bu sxemani soddalashtirilgan xolda quyidagicha ifodalash mumkin: 
Ko’p qatlamli neyron to’rlar o’ta kuchli funktsional quvvatga ega bo’lib, 
murakkab funktsiyalarni approksimatsiya(ifoda)lay olishi mumkin. Xususan birinchi 
qatlami sigmoida va ikkinchi qatlami chiqizli transfer funktsiya bo’lgan ikki qatlamli 
neyron to’r ixtiyoriy funktsiyani approksimatsiyalay oladi. Albatta, buning uchun 
approksimatsiyalanishi kerak bo’lgan funktsiyaning murakkabligiga xarab xar ikkala 
qatlamdagi neyronlar soni etarli bo’lishi va ko’p, lekin chekli sondagi o’rgatish 
amalga oshirilishi kerak. 
Neyron to’rlarda quyidagi transfer funktsiyalar ishlatiladi: 
Zinali (hard limit): 






0
,
1
0
,
0
n
агар
n
агар
a
CHiziqli (linear): 
b
wn
a


Sigmoida 
(log-
sigmoid): 
n
e
a



1
1
Zinali transfer funktsiya barcha transfer funktsiyalar ichida eng funktsional 
kuchsizi, ammo birinchi neyron to’r(perseptron)da aynan mana shu funktsiyadan 
foydalanilgan. CHiziqli transfer funktsiyaning boshqa transfer funktsiyalardan 
afzalligi – chiqish doirasi katta, ammo shu bilan birga eng katta kamchiligi ixtiyoriy 
ko’p qatlamli chiziqli neyron to’rni bir qatlamli chiziqli neyron to’r bilan almashtirish 
mumkin. YA’ni faqat chiziqli transfer funktsiyalardan foydalanib neyronlarni ko’p 
qatlamlarga biriktirish ularning funktsional quvvatini oshirmaydi. CHiziqli transfer 


172 
funktsiyaning aksini sigmoida transfer funktsiyasida ko’rishiiz mumkin. Sigmoida 
transfer funktsiyali neyronning chiqishi kirishiga mos ravishda 0 va 1 oralig’ida 
joylashadi. SHuning uchun xam bunday funktsiyalarni siquvchi funktsiyalar deb xam 
yuritiladi. Sigmoida transfer funktsiyali neyronlarni ko’p qatlamlarga biriktirish 
ularning funktsional quvvatini juda oshiradi. 

Download 2.86 Mb.

Do'stlaringiz bilan baham:
1   ...   98   99   100   101   102   103   104   105   ...   148




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling