Bituruv malakaviy ishi
Foydalanuvchi adabiyotlar ro`yxati
Download 296.24 Kb.
|
Aziz 100%
Foydalanuvchi adabiyotlar ro`yxati
1. Jiang H., Ruan J. The Application of Genetic Neural Network in Network Intrusion Detection // Journal of computers. 2009. vol. 4. no. 12. pp. 1223–1230. 2. Ireland E. Intrusion Detection with Genetic Algorithms and Fuzzy Logic // UMMC Scisenior seminar conference. 2013. pp. 1–6. 3. https://www.networkworld.com/article/2228598/security/intrusion-detection-%2Dwhy-do-i-need-ids-%2Dips-%2Dor-hids- 4. Markelov O., Duc V. N., Bogachev M. Statistical modeling of the Internet traffic dynamics: To which extent do we need long-term correlations? //Physica A: Statistical Mechanics and its Applications. – 2017. 5. Платонов В. В., Семенов П. О. Обнаружение сетевых атак в компьютерных сетях с помощью методов интеллектуального анализа данных // Интеллектуальные технологии на транспорте. – 2016 6. Barnes B. C., Sellers M. S. Getting Started with C++ //Introduction to Scientific and Technical Computing. – 2016. – С. 119. 7. Usmanbayev D. Sh., Axmedova N. Q. Yangi avlod tarmoq hujumlarini aniqlash tizimi // “Ахборот технологиялари ва коммуникациялари соҳасида ахборот хавфсизлиги ва киберхавфсизлик муаммолари” мавзусидаги Республика миқёсидаги илмий-техник конференцияси материаллари. Муҳаммад ал-Хоразмий номидаги Тошкент ахборот технологиялари университети. 2018 йил 22-23 сентябрь. Тошкент, 2018, 228-231 бетлар. 8. Usmanbayev Doniyorbek, G’aniyev Abduhalil, Bozorov Suhrob. Tarmoq trafigini tahlil etuvchi vositalarning qiyosiy tahlili// O‘zbekiston Respublikasi axborot texnologiyalari va kommunikatsiyalarini rivojlantirish vazirligi Muhammad al-Xorazmiy nomidagi Toshkent axborot texnologiyalari universiteti Samarqand filiali “Axborot kommunikatsiya texnologiyalari va dasturiy ta’minot yaratishda innovatsion g‘oyalar” Respublika ilmiy-texnik anjumanining ma’ruzalar to‘plami 6-qism, 201-204-betlar. 9. Draper N. R., Smith H. Applied regression analysis. – John Wiley & Sons, 2014. 9. Devendrakailashiya, Dr. R.C. Jain “Improve Intrusion Detection Using Decision Tree with Sampling” in IJCTA // MAY-JUNE 2012. 10. YacineBouzida, Frederic Cuppens “Neural networks vs. decision trees for intrusion detection” in 2011.SIGMOD Record, 30 (4), 25-34. 11. http://opensourceforu.com/2017/04/best-open-source-network-intrusion-detection-tools/ 12. D. Day and B. Burns. A performance analysis of Snort and Suricata network intrusion detection and prevention engines. In Proceedings of the ICDS’11, 5th International Conferenc e on Digital Society, pages 187–192, Gosier, Guadeloupe, France, 2011. 13. Лукацкий, Алексей, "Предотвращение сетевых атак, технологии и и решения" / Алексей Лукацкий, Москва, 2006. 14. http://tartex.uz/?page_id=889 15.https://ru.wikipedia.org/wiki/%D0%94%D0%B0%D1%80%D0%BA%D0%BD%D0%B5%D1%82 Download 296.24 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling