Book · January 994 citations 110 reads 2,264 authors


Download 5.72 Mb.
Pdf ko'rish
bet114/176
Sana20.10.2023
Hajmi5.72 Mb.
#1712691
1   ...   110   111   112   113   114   115   116   117   ...   176
Bog'liq
1994 Book DidacticsOfMathematicsAsAScien

Jens Holger Lorenz, in his paper on mathematically retarded and gifted
students, acknowledges that groups of individuals differ qualitatively in
their mathematical thinking. He discusses various disciplinary approaches
for explaining differences in arithmetic skills and in the acquisition of fun-
damental mathematical concepts both for mathematically retarded and for
highly gifted students.
He reveals that, from certain perspectives (like psychodiagnostics or neu-
ropsychology, although they are often used for assessing differences), no
methodological-didactical measures can be derived, whereas, from other
perspectives (e.g., cognitive psychology), one may provide some access for
an understanding of both shortcomings and giftedness in the acquisition of
mathematics. When pointing at the qualitative differences in information
processing among groups of highly gifted students, he concludes that, be-
cause of their individual styles of learning, mathematically highly gifted
students – like retarded students – require a teaching method of their own.
Whether or not a differential didactics exists or should be applied for
males and females is a difficult question.
In her contribution, Should girls and boys be taught differently? Gila
Hanna critically examines different bodies of research concerned with gen-
der differences. As an expert on measurement and evaluation of studies in
education, she elaborates that (given the published findings) there is no clear
evidence for a general superiority of male mathematical achievement. She
argues that potential structural differences in the gender's approaches are
derived more from pronounced assertions than from from solid empirical
evidence. Furthermore, when considering the last centuries, gender differ-
ences in mathematics achievement (see also Robitaille and Nicol, this vol-
ume) seem to be diminishing. If at all, boys seem to outperform girls in the
field of problem-solving. Thus Hanna doubts whether differential didactics
289


would be in the interest of women, as a presumed short-term advantage – in
the long run – might reverse progress in levelling out female and male
mathematics achievement.
Note that not only a hidden type I error may be found but also a hidden
differential didactics that handicaps female students. First, research on text-
books has shown that examples of mathematization mostly come from the
boys' range of experience. Second (as Hanna reports), boys receive more
attention in the classroom than girls. Thus we should not aim to introduce
but rather to eliminate a differential didactics for gender.
If one wants to differentiate mathematics instruction for different popula-
tions, one should know the communalities. Nearly every national school
system provides different treatments, that is, different intensities and per-
haps qualities of mathematical instruction by means of streaming, by differ-
ent levels of the school system, or by different curricula for certain students.
Clearly, determining difference often starts from common features. Thus,
the topic of differential didactics leads directly to the question on which
mathematics may and should be taught to all. Starting from a historical
analysis on the spread of mathematics, Zalman Usiskin's paper on from
"mathematics for some" to "mathematics for all" deals with a didactical
analysis of mathematics to be taught to all in order to meet the needs of the
individual and of society. As he elaborates, the accessibility of mathematics
has not only increased dramatically, but also, because so much (cognitive)
work has been taken over by the computer, a fundamental change of the
core of mathematics education has to be expected.
There are various primary links to other chapters of this volume. As many
misconceptions of mathematical problems underlie how low achievers cope
with mathematical problems, both Fischbein's paper on formal, algorithmic,
and intuitive components in a mathematical activity as well as Lompscher's
contribution on the teaching experiments of the sociohistorical school pro-
vide insights into retarded students' mathematical thinking. Thus the contri-
butions of chapter 5 on psychology on mathematical thinking are most close
to this chapter. However, the paper of David Robitaille and Cynthia Nicol
on Comparative international research in mathematics education or
Ubiratan D'Ambrosio's cultural framing of teaching and learning mathe-
matics, both from chapter 8, also deal with issues of differential didactics.
REFERENCES
Anastasi, A. (1954). Contributions to differential psychology. New York: Macmillan.
Dubiel, H. (1985). Was ist Neokonservatismus? Frankfurt: Suhrkamp.
Springer, S. P., & Deutsch, G. (1981). Left brain, right brain. New York: W.H. Freeman
Steiner, H. G. (1986) Sonderpädagogik für testsondierte "mathematisch hochbegabte"
Schüler oder offene Angebote zur integrativ-differenzierenden Förderung mathematis-
cher Bildung?" In Beiträge zum Mathematikunterricht 1986 (pp.280-284). Bald-
Salzdethfurth: Franzbecker.
INTRODUCTION TO CHAPTER 6
290


MATHEMATICALLY RETARDED
AND GIFTED STUDENTS
Jens Holger Lorenz
Bielefeld
1. MATHEMATICALLY RETARDED STUDENTS
1.1 The Problem
Research in the field of learning disabilities in arithmetic skills has not yet
reached the stage that dyslexia research has achieved during the last 25
years. This is all the more surprising, as studies strictly basing their diagno-
sis of dyscalculia on a developmental lag of 2 years as compared to perfor-
mance in other school subjects have shown that about 6% of students must
be evaluated as showing extremely poor performance in arithmetic (Kosc,
1974), and that at least 15% must be considered to have such trouble with
calculation that they need help (Lorenz, 1982). On the whole, it is stressed
that dyscalculia occurs much more often in elementary school than prob-
lems with reading and orthography (Klauer, 1992). One of the reasons for
this deficit is that attempts at explaining dyscalculia were made from very
diverging fields of science and diversifying research approaches. Research
was further impeded by the fact that older research approaches used defini-
tions of dyscalculia that were oriented toward discrepancy models. While a
case of dyscalculia may be assumed if an arithmetical substandard perfor-
mance is present (a) in students showing at least average intelligence, or (b)
Download 5.72 Mb.

Do'stlaringiz bilan baham:
1   ...   110   111   112   113   114   115   116   117   ...   176




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling