Book · January 994 citations 110 reads 2,264 authors


Download 5.72 Mb.
Pdf ko'rish
bet122/176
Sana20.10.2023
Hajmi5.72 Mb.
#1712691
1   ...   118   119   120   121   122   123   124   125   ...   176
Bog'liq
1994 Book DidacticsOfMathematicsAsAScien

schooling. Bedford Way Papers 24. London: University of London Institute of
Education.
314


FROM "MATHEMATICS FOR SOME" TO
"MATHEMATICS FOR ALL"
Zalman Usiskin
Chicago
1. INTRODUCTION
There have been, in this century, two major developments in mathematics
education. The first of these, continuing a movement that is several centu-
ries old, is the teaching of more and more mathematics to more and more
people. For instance, the study of algebra and geometry, which, even a cen-
tury ago, was reserved for a small percentage of the population even in the
most technological of our societies, is now a part of the core curriculum for
all students in many countries. The second development, only within the
past 30 years or so, has been the emergence of computer technology, which
enables much mathematics to be done more easily than ever before, and en-
ables some mathematics to be done that could not be done at all previously.
As a result, more people are encountering and doing far more mathematics
than ever before, and there is great pressure nowadays to teach a great deal
of mathematics to all people.
In this paper, these developments are placed in an even longer historical
framework than this century, and that framework as well as some recent
work is used to suggest directions in which mathematics in school and soci-
ety may be moving and should be moving.
2. DEFINITIONS OF TERMS
The word all in the title of this paper refers to all of the population except
the mentally disabled, which means at least 95% of any age cohort. The re-
lationship between "all" and "all students" varies by country and age level
of the student. For instance, in the United States, about 71% of 18-year-olds
graduate high school with their age cohort, and about 15% more earn their
high school diplomas later. So, for the United States, "all" constitutes a po-
pulation larger than those who finish high school. In contrast, in Japan, 95%
is just about the percentage of students who graduate high school.
On the other hand, here the phrase mathematics for all refers to school
mathematics for all, and so these remarks are not meant to apply in those
places where children do not attend school, or cannot attend school, or
choose not to attend. Mathematics for all refers at different times in this pa-
R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann (Eds.),
Didactics of Mathematics as a Scientific Discipline, 315-326.
© 1994 Dordrecht: Kluwer Academic Publishers. Printed in the Netherlands.


per to the mathematics that has been learned by all, that is being learned by
all, that could be learned by all, that should be learned by all, or that will be
learned by all.
The content of school mathematics is broad, including: skills and algo-
rithms; properties and proofs; uses and mathematical models; and represen-
tations of many kinds, what in the secondary materials of UCSMP are ter-
med the SPUR (S = skills, P = properties, U = uses, R = representations)
dimensions of mathematics (UCSMP, 1990, 1991, 1992).
3. THE CURRENT STATE OF MATHEMATICS FOR ALL
In most of the world, all students are expected to learn a considerable
amount of arithmetic. Until recently, because one needed to know paper-
and-pencil skills in order to use arithmetic, the Skills dimension of arithme-
tic was the most emphasized everywhere. However, because of the emer-
gence of calculators, in some countries there has been a decrease in the at-
tention given to the skill dimension, and a corresponding increase in atten-
tion to both the Uses and Representations dimensions. Yet it is probably
safe to say that in most classrooms in the world, the teaching of paper-and-
pencil skills still dominates class time.
Elementary school teachers are fearful of the calculator, for they know
that a calculator can perform all of the arithmetic they have been teaching.
They understand that arithmetic is important for every child to know, but
given the presence of a calculator, these teachers do not know what to teach,
and they may stop teaching arithmetic entirely. This view is reflected in re-
commendations by some science educators in the United States that much of
the time spent on mathematics in the elementary school can now be spent on
science, because the content that has been taught is no longer needed. In-
deed, in one report there is no index listing for arithmetic, though there are
listings for algebra, geometry, and many other aspects of mathematics
(AAAS, 1989). Thus, though it would seem that "arithmetic for all" is so in-
grained in schooling that it will not leave, there is a distinct possibility that
without a well-formed replacement for the structure that the algorithms of
arithmetic imposed on the curriculum, much of the arithmetic curriculum
might disappear. It is already the case that in some countries some of the
more complicated arithmetic algorithms, such as long division, are not being
taught to all students and not being tested. It is a case of "arithmetic for all"
becoming "arithmetic for some."
Despite the fact that some mathematics is becoming obsolete, more and
more mathematics is entering the curriculum. As an example, in the United
States only a generation ago, most students encountered not one day of pro-
bability, and the only statistics taught was how to calculate the average of a
set of numbers. A national report in 1959 recommended merely that an op-
tional course in probability and statistics be available to 12th-grade students
(CEEB, 1959). By 1975, only 16 years later, there was quite a change: A re-
MATHEMATICS FOR ALL
316


port recommended that statistics be taught at all levels of the curriculum
(NACOME, 1975), a recommendation that has been repeated many times
(see, e.g., NCTM, 1989).
Similar increases in the mathematics all students are expected to learn
have happened in all countries. For example, students in almost all countries
today are expected to know a great deal more about measurement than they
used to know. In some countries, all students are expected to know some al-
gebra and some geometry, and this algebra is quickly becoming quite graph-
ical with an earlier study of functions, and there are trends that indicate the
geometry is becoming quite a bit more visually sophisticated, with the in-
creasing use of coordinates, isometries, and other transformations, and con-
tinuous deformations.
4. FROM ARITHMETIC FOR SOME TO ARITHMETIC FOR ALL
To obtain guidance regarding what may happen or what should be our poli-
cies toward these changes, it is useful to ask if there has ever previously
been a time like ours, when there was a revolution in the amount of mathe-
matics that the average citizen was expected to know. From a Western per-
spective, a corresponding revolution began in the 15th century.
Compared with the situation today, in the 15th century very little mathe-
matics – only counting and the simplest of addition – was known to all
people even in the most advanced of countries. Nowhere near 95% of child-
ren went to school, and arithmetic was one of the liberal arts, taught in col-
leges that few attended. We might say that in the 15th century all mathema-
tics was for some. Dantzig (cited in Swetz, 1987) tells a story, which suppo-
sedly took place in the first half of the 15th century, of a trader in Germany
who wanted his son to get the best mathematics education he could. The
trader consulted a professor at a German university, who advised him that
his son could learn to add and subtract at his university, but if he wanted to
learn to multiply and divide, then he should go to Italy, where they were
more advanced in such matters.
Yet, 500 years later, by the end of the last century, whenever there was
compulsory schooling, arithmetic was present, and the expectations for
arithmetic were quite formidable, with the complexity of the problems being
enough to challenge any of us today.
Three fundamental developments changed the situation. The first, as the
quote from Dantzig reminds us, was the increased amount and sophistica-
tion of trade between peoples. This increased the need for accurate records
that were understandable to traders and to those who benefited from the
trade: manufacturers of goods, owners of land from whom farmstuffs and
minerals were gotten, and all others in the marketplace. Great numbers of
people were engaged in these professions, and so the increasing need for
mathematical knowhow in the marketplace was no small influence on the
amount of mathematics known to the average citizen.
ZALMAN USISKIN
317


MATHEMATICS FOR ALL
The second development was mathematical: the invention of algorithms
that made it easier to do arithmetic than had previously been the case. Ro-
man numerals were not well-suited for computation beyond addition and
subtraction, and algorithms for multiplication and division were in their in-
fancy in the 15th century. At the end of the 16th century, in 1585 when Si-
mon Stevin first considered decimal places to the right of the unit's place,
one of the main arguments he put forth for using them was that there existed
algorithms for multiplication and division that could be applied to what he
called "decimal fractions," and thus computation would be simplified.
Within 30 years of Stevin's invention of decimals, logarithms had been in-
vented and decimals were established as the preeminent way to represent
numbers. The third development that enabled the expectation for compe-
tence in arithmetic to become universal was the invention of printing.
Arithmetic skills are not easily learned; certainly they are not usually lear-
ned merely from one or two books that might be community property. Thus
in order for competence in arithmetic to become universal, there had to be
enough books to enable all students to have their own books. Printing made
it possible to have enough books. Printing also helped to standardize the
language of arithmetic throughout the Western world. Today's differences in
notation throughout the world are minor – numerals and other symbols are
the same, enabling traders worldwide to use the same arithmetic language.
Thus between 1400 and 1900, "arithmetic for some" became "arithmetic
for all," and necessary for this were three developments: a societal need for
the competence; the mathematical language and tools that made this compe-
tence a reasonable expectation; and technology that made it possible for this
competence to be realized.
5. FROM ARITHMETIC FOR ALL TO ARITHMETIC
AS A PART OF LITERACY
At the same time that arithmetic changed from being for some to for all, so
did reading, and for the same reasons. An enlightened citizenry and an in-
telligent work force came to require both the ability to read and the ability to
compute and apply arithmetic.
One needs only examine a daily newspaper to get an idea of the extent to
which arithmetic is ingrained in our cultures and has become a necessary
Download 5.72 Mb.

Do'stlaringiz bilan baham:
1   ...   118   119   120   121   122   123   124   125   ...   176




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling