Book · January 994 citations 110 reads 2,264 authors


Download 5.72 Mb.
Pdf ko'rish
bet130/176
Sana20.10.2023
Hajmi5.72 Mb.
#1712691
1   ...   126   127   128   129   130   131   132   133   ...   176
Bog'liq
1994 Book DidacticsOfMathematicsAsAScien

didactics of mathematics, a theory of learning is also an aspect of the
human-mathematics interaction that the philosophy of mathematics should
also accommodate.
Developments in descriptive social philosophies of mathematics have
parallels in widespread currents in transdisciplinary thought. Thus develop-
ments in the history of mathematics (Kline, Joseph, Høyrup, Szabo), cul-
tural studies of mathematics (Bishop, Wilder, Mackenzie), anthropology of
mathematics and ethnomathematics (Ascher, Crump, D'Ambrosio, Gerdes,
Zaslavsky), the sociology of science, knowledge and mathematics (Bloor,
Fisher, Restivo, Fuller), the rhetoric of science (Billig, Knorr-Cetina), in-
terdisciplinary post-structuralist and post-modernist thought (Foucault,
Walkerdine, Lyotard), semiotics (Rotman, Eco), social constructionist psy-
PAUL ERNEST
337


PHILOSOPHY OF MATHEMATICS
chology (Gergen, Harré, Shotter), evolutionary epistemology (Campbell,
Rav), the philosophy of science (Feyerabend, Hacking, Kuhn, Laudan) and
philosophy in general (Rorty, Toulmin) are all looking towards social con-
structivist accounts of knowledge. These developments therefore also sup-
port the didactical consequences of social philosophies of mathematics dis-
cussed below.
2. THE PHILOSOPHY OF MATHEMATICS EDUCATION
The central claim of this chapter is that different positions in the philosophy
of mathematics have significantly different implications for the didactics of
mathematics as Thom, Hersh and Steiner claim:
In fact, whether one wishes it or not, all mathematical pedagogy, even if scarcely
coherent, rests on a philosophy of mathematics. (Thom, 1973, p. 204)
The issue, then, is not, What is the best way to teach? but, What is mathematics
really all about? . . . Controversies about . . . teaching cannot be resolved without
confronting problems about the nature of mathematics. (Hersh, 1979, p. 34)
Thesis 1
Generally speaking, all more or less elaborated conceptions, epistemologies,
methodologies, philosophies of mathematics (in the large or in part) contain – of-
ten in an implicit way – ideas, orientations or germs for theories on the teaching
and learning of mathematics . . . .
Thesis 2
Concepts for the teaching and learning of mathematics – more specifically: goals
and objectives (taxonomies), syllabi, textbooks, curricula, teaching methodolo-
gies, didactical principles, learning theories, mathematics education research de-
signs (models, paradigms, theories, etc.), but likewise teachers' conceptions of
mathematics and mathematics teaching as well as students' perceptions of math-
ematics – carry with them or even rest upon (often in an implicit way) particular
philosophical and epistemological views of mathematics. (Steiner, 1987, p. 8)
Any philosophy of mathematics has powerful implications for social and
educational issues and many didactic consequences. However, these are not
all strictly logical deductions from the position, and a number of aims, val-
ues and additional conceptions must be assumed in addition to the philoso-
phy of mathematics per se (Ernest, 1991). Because the link is not one of
logical implication, it is theoretically possible to consistently associate a
philosophy of mathematics with almost any educational practice or didactic
approach. Both a neo-behaviourist (such as Ausubel) and a radical construc-
tivist are concerned to ascertain what a child knows before commencing
teaching, despite having diametrically opposite epistemologies. Likewise, a
traditional purist mathematician and a social constructivist may both favour
a multicultural approach to mathematics, but for different reasons (the for-
mer to humanize mathematics, the latter to show it is the social construction
of humanity).
Although there is no logical necessity for, for example, a transmission-
style pedagogy to be associated with an absolutist, objectivist epistemology
338


PAUL ERNEST
and philosophy of mathematics, such associations often are the case (Ernest,
1988, 1989, 1991). This is due to the resonances and sympathies between
different aspects of philosophies, ideologies and belief systems, which form
links and associations in moves towards maximum consistency and coher-
ence.
3. DIDACTICAL CONSEQUENCES OF PRESCRIPTIVE,
OBJECTIVIST PHILOSOPHIES OF MATHEMATICS
Many didactical consequences of prescriptive philosophies, such as
Logicism and Formalism, follow from their identification of mathematics
with rigid and logically structured mathematical theories following the
Euclidean/Cartesian paradigm of mathematics as an objective, absolute, in-
corrigible body of knowledge. According to such views, mathematics rests
on certain foundations, such as logic, and rises from its base to heights of
abstraction and generality. The structure that supports the edifice is that of
deductive logic, which locks it into a fixed and rigid hierarchy. Conse-
quently, mathematical knowledge is viewed as timeless, although new the-
ories and truths may be added; it is superhuman and ahistorical, for the
history of mathematics is irrelevant to the nature and justification of math-
ematical knowledge; it is pure isolated knowledge, which happens to be use-
ful because of its universal validity; it is value-free and culture-free, for the
same reason.
Such a view of mathematics may be related to current developments in
British mathematics education. An absolutist conception of mathematics
(and knowledge in general) underpins the British National Curriculum in
mathematics. For this identifies the mathematics curriculum as a rigid hier-
archical structure of five Attainment Targets, comprising items of knowl-
edge and skill at 10 discrete levels. The hierarchical structure of the
National Curriculum may be viewed as a "fractional distillation device," be-
cause it serves to separate off different fractions of the school population by
class/gender/race and future occupation (Dowling & Noss, 1990; Ernest,
1991).
An important didactic consequence of absolutist philosophies of mathe-
matics is that they support a transmissive teaching approach based on the
broadcast metaphor. If mathematics is a pre-existing and superhuman body
of knowledge, then its teaching is a matter of efficient transmission. The
emphasis is on the content, and any obstacles in coming to terms with it
would be due to the learner's poor grasp (or the teacher's unclear exposition)
of the ready-made knowledge being transmitted. Such views of mathematics
may be associated with humanistic approaches to mathematics teaching, but
these may merely seek to ameliorate the problem arising from the intrinsic
nature of mathematics (i.e., its objective purity, abstractness and difficulty).
339


The intuitionism developed by Brouwer (1913) can be viewed as both pre-
scriptive and descriptive. It is prescriptive in attempting to secure the foun-
dations of a part of mathematics on a constructive basis. But there is also an
attempt to construct a system that is faithful to the subjective experience of
the mathematician: Construction, algorithm and agency are all important
both in the construction of mathematics and in its foundations. This fidelity
to subjective experience (i.e., descriptiveness) may account for the popular-
ity of intuitionism, despite its weaknesses (Machover, 1983). This perspec-
tive has been termed "progressive absolutism" (Confrey, 1981; Ernest,
1991). It views knowledge as both progressive and open ended, but presup-
poses some underlying shared and absolute truth to which subjective con-
structions tend as to a limit.
Some contrast with the educational outcomes of prescriptive philosophies
of mathematics is provided by the progressive education movement. This
provided the background to progressive elementary education in Britain,
with its emphasis on exploration, activity and child-centredness. In mathe-
matics education, this movement has encouraged problem-solving, discus-
sion, investigational approaches and a respect for the creations of the
learner. On the negative side, this perspective can be over-protective of the
learner, wishing to shield her or him from the stigma and hurt of getting an-
swers wrong (ticks but not crosses are used). It often fails to engage with
real-life social and political issues; not only the importance of examinations
but also confidence in critical social arithmetic, essential to gaining power
over one's adult life.
Many of these weaknesses arise from the fact that progressive mathemat-
ics education is based on a humanized absolutist conception of mathematics
that regards mathematics as pure and absolute. Although a progressive ped-
agogy expects learners to build meaning actively on the basis of exploration,
conjectures, and other constructive processes, there is an underlying as-
sumption that there is a correct body of mathematical knowledge that will
emerge from construction. Thus, although the pedagogy is not based on the
broadcast metaphor, it assumes that there are truths to be discovered, which
are self-evidently correct once found. The focus is therefore on the deep
constructive activity of the learner, assumed to produce the required math-
ematical knowledge and truth. The teacher's role is restricted to that of
midwife, facilitator and corrector when the learner goes astray; not the
leader in the negotiation of meaning and knowledge. These views underpin
certain versions of constructivism (not the radical constructivism of von
Glasersfeld, 1983) and reveal their underlying epistemological weakness.
340
PHILOSOPHY OF MATHEMATICS
4. PROGRESSIVE ABSOLUTISM AND
ITS DIDACTICAL CONSEQUENCES


A social view of mathematics has important implications for the didactics of
mathematics and educational issues including those of mathematics and
gender, race and multiculture, since it recognizes the social import and
value-laden nature of mathematics; for pedagogy, by supporting fully in-
vestigational and problem-solving approaches as paralleling the means by
which mathematical knowledge is generated; as well as enabling challenges
to hierarchical views of mathematics, learning and ability due to a rejection
of fixed and objective epistemological hierarchies. Since social views of
mathematics acknowledge its fallibilism and culture-embeddedness, and
thus look critically at received knowledge structures and their relations with
society, they resonate with the aims of critical mathematics education to ed-
ucate confident problem posers and solvers able to critically evaluate the
social uses of mathematics. Some of the didactical consequences of the
main social philosophies of mathematics are as follows.
Wittgenstein (1952, 1956) offers a powerful social vision of mathematics.
His key contribution is to recognize the subjective and social basis of cer-
tainty that following a rule in mathematics or logic does not involve logical
compulsion. Instead, it is based on the tacit or conscious decision to accept
the rules of a "language game," which are grounded in pre-existing social
"forms of life." For didactics, Wittgenstein's importance is to show that the
"certainty" and "necessity" of mathematics are the result of social processes
of development, and that all knowledge, including that in education,
presupposes the acquisition of language in meaningful, already existing so-
cial contexts and interactions. Through his concepts of language games and
forms of life, Wittgenstein acknowledges not only the primacy of social
context but also its multifaceted nature. Thus, he anticipates the notion that
human activities fall into a set of different practices with different purposes,
associated language games, resources and participants. Thus he anticipates
much foundational thought in modern philosophy and educational theory
that affords primacy to culture, context or discursive practice. However
Wittgenstein's approach is synchronic rather than diachronic, that is, he em-
phasizes existing social structures and linguistic use-patterns but not their
historical development (Foucault's "archaeology of knowledge").
Lakatos (1976, 1978) goes beyond Wittgenstein's insight to show more
fully the historical and conceptual change-basis of all of the concepts, terms,
symbolism, theorems, proofs and theories of mathematics. The historical
dimension can show why particular concepts and results were developed in
mathematics, based on particular problems and difficulties encountered his-
torically. For didactics, his importance is due to bringing in the historical
dimension, and for showing that the methodology of mathematics as used
by practising mathematicians does not differ in kind from the heuristics of
problem-solving in the classroom. He also shows the import of conventions,
PAUL ERNEST
341
5. DIDACTICAL CONSEQUENCES OF SOCIAL
PHILOSOPHIES OF MATHEMATICS


agreement and power in the warranting of mathematical productions
(mathematical knowledge), which so strikingly parallels classroom devel-
opments.
Kitcher (1984) extends more systematically the historico-cultural basis of
mathematics, and, in particular, shows the role of mathematical authorities
(e.g., teachers) in communicating mathematical knowledge at both the dis-
ciplinary and the didactic levels. He ascribes an epistemological role to au-
thorities as providing warrants for mathematical assertions, which then later
become warranted for an individual by reason or some similar process. Thus
he admits three types of warrant: sensory experience, authority and reason,
which apply both to the cultural and individual development of mathemati-
cal knowledge.
Davis and Hersh (1980, 1988) elaborate on and extend the insights of
Lakatos. Their unique contribution is to demonstrate the cultural nature of
mathematics, how it has both an inner and outer aspect. Whereas previous
scholars have emphasized the internal history of mathematics, these authors
demonstrate that mathematics permeates and shapes all aspects of social and
cultural life, and is, in turn, shaped by social forces. Didactically, their posi-
tion is important, because it transcends the pure-applied and academic-folk
mathematics boundaries and shows that mathematical activity is universal,
multicultural, and cannot be divorced entirely from its social context of use.
Furthermore, having power over the social forms, manifestations and uses
of mathematics is a vital goal of mathematics education.
The social constructivist view (Ernest, 1991, 1992, in press) offers a
synthesis of the philosophies indicated here, and makes a number of their
features more explicit. Beyond this, it is novel in several features, including
the proposal that individual and disciplinary knowledge of mathematics are
mutually interdependent, and that they recreate each other through interper-
sonal interaction, mediated by texts or other linguistic, symbolic or iconic
representations (possibly at a distance but modelled on conversation). It
suggests that the development of new mathematical knowledge, as well as
new subjective understandings of mathematics, are derived from interper-
sonal negotiations and dialogue; that is, that learning and making mathemat-
ics emerge from similar processes. There is also a particular stress on the
tacit and linguistic knowledge shared by members of a culture, which pro-
vides a basis for their acquisition of mathematical knowledge. Finally, a
suggestion is made that mathematicians and others, through extended work
with symbols, construct such convincing imagined "math-worlds" that the
objects of mathematics seem to have an independent existence. Didactically,
this parallels an inverted problem, that symbolic manipulations often do not
lead to the construction of subjective math-worlds, leading to problems of
incomprehension, alienation and failure. These problems lead to one of the
contradictions of mathematics education. Mathematics is, on the face of it,
the most rational of all subjects, since its conclusions are legitimated by rea-
342
PHILOSOPHY OF MATHEMATICS


son alone. Yet when the reasoning behind mathematics is not understood,
because of the strict rigour and abstract symbolism needed for precision and
power, it becomes the most irrational and authoritarian of subjects.
Many didactic consequences flow from social constructivism. One is the
importance of the linguistic basis of the understanding of mathematics.
Children begin schooling with a rich vocabulary (half that of an adult) and a
set of mathematical terms and notions. They can already sort, count, locate,
play, make, design, plan, explain, argue, and maybe measure: all the activi-
ties Bishop (1988) identifies as the cultural basis of mathematics. According
to social constructivism, ontogeny, if not recapitulating, at least parallels
phylogeny. The developing child's "culture" includes all the proto-mathe-
matical ideas, actions and terms needed for the meaningful foundation of
formal school mathematics, and social constructivism supports the view that
formal instruction should build on this foundation.
6. CONSTRUCTIVE EDUCATIONAL OUTCOMES OF
A SOCIAL VIEW OF MATHEMATICS
The various social views of mathematics, social constructivism in particular,
when combined with parallel social theories described above, give rise to a
number of features of significance for the mathematics classroom. In out-
line, these include:
1. The social and cultural context within which all mathematics occurs,
including interpersonal relationships, social institutions and power relations.
2. The social processes involved in the determination, construction and
negotiation of mathematical concepts, methods, symbolism, arguments and
results.
3. The historico-cultural context of mathematics, the sources and uses of
the artifacts, tools and concepts involved.
4. The linguistic basis of mathematical knowledge, and, in particular, the
role of the special symbolism in mathematics.
5. Education is an intentional activity, and so there are the values, pur-
poses and goals underpinning the processes of mathematics education.
6. Mathematics depends crucially on the subjective construction of
meaning, and the ability to construct, call up, and enter the resultant per-
sonally imagined math-worlds, since there is no "real-world" described by
mathematics. The paradigm for these is the social worlds of meaning every
child learns to construct through participation in communicative social
practices.
7. Mathematics (including mathematical knowledge) is a discursive social
practice that is not wholly disjoint from other social practices or areas of
knowledge; the separateness of mathematics from other school subjects (and
out-of-school practices) is a construction.
PAUL ERNEST
343


6.1 Principles of a Social Constructivist Pedagogy of Mathematics

Download 5.72 Mb.

Do'stlaringiz bilan baham:
1   ...   126   127   128   129   130   131   132   133   ...   176




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling