Book · January 994 citations 110 reads 2,264 authors


Download 5.72 Mb.
Pdf ko'rish
bet117/176
Sana20.10.2023
Hajmi5.72 Mb.
#1712691
1   ...   113   114   115   116   117   118   119   120   ...   176
Bog'liq
1994 Book DidacticsOfMathematicsAsAScien

Cognitive psychology. Models of cognitive psychology arise, for the field
of arithmetics, from merging the Piagetian tradition with approaches from
psychological theories of information processing. As a rule, a student's erro-
neous solution is compared to a theoretical model of the adult expert.
Unsuccessful attempts at solution are explained by misguided steps within
the solving sequence. For correct expert solutions, flow diagrams can be es-
tablished, which must also be absolved by the student. The cognitive-psy-
chological effort lies in differentiating between the individual steps consti-
tuting the process of solving (Allardice & Ginsburg, 1983; Resnick &
Neches, 1984). Here, the models developed for problem classes permit a
more precise description of the errors the student has made, which, in con-
trast to curricular error analysis, is not focused on a quasi-objective hierar-
chy of difficulty, but rather on the cognitive steps that have to be absolved
by the problem-solving subject.
From the perspective of cognitive psychology, dyscalculia is conceived of
(a) as a quantitative problem, erroneous algorithms ("bugs" in the major
programs guiding the individual steps) occurring in a multitude of content
areas, thus leading to a massing of errors; and (b) as a qualitative defect in
the sense of disturbance in an essential cognitive unit. In line with the com-
puter metaphor, this is localized in memory, in the central processor, and so
forth.
The treatment measures derived from that then consist of encouraging
optimal solving strategies, in learning by insight, and in training metacogni-
tions. This is significant, insofar as it does not favor, in contrast to other ap-
proaches, a drill-and-practice method, but rather the interplay between au-
tomatized procedural knowledge and processes of understanding. This is
also evident from the students' attempts to correct errors by repair (Brown &
van Lehn, 1980). Besides illustrating idiosyncratic reasoning processes in
dyscalculia students, this also shows their desire to carry out algorithms in a
syntactically perfect way while ignoring the semantic level.
Inspection of the bugs . . . shows that they tend to "look right" and to obey most
of the important syntactic rules for written calculation: the digit structure is re-
spected, there is only a single digit per column, all the columns are filled, and so
forth. In the sense of being an orderly and reasonable response to a problem situa-
tion, the buggy algorithms look quite sensible. But each of the bugs violates fun-
damental mathematical constraints. In this sense, they violate the conceptual
meaning, or semantics . . . . (Resnick, 1984, p. 3)
For this reason, simply exercising algorithms does not seem sufficient for
dyscalculia children, but rather the accompanying methods of recognizing
and deciding must be learnt at the same time and thus thematized in the
classroom.
JENS HOLGER LORENZ
295


1.3 The Cognitive Demands of Teaching
For the analysis of dyscalculia, it is increasingly evident that a multitude of
factors concerning the subject matter to be learned, the social structure of
the class and of the environment, and the student's personality may impede
or prevent the processes of learning. For this reason, analysis of the individ-
ual case is mandatory for diagnostics. For this purpose, it has proved favor-
able to study the cognitive demand in teaching elementary arithmetics.
Independent of the textbook used and the methodological approach, four
stages can be distinguished in introducing and affirming new concepts:
1. The operation is built up by activities involving concrete material while
respecting the quantitative structure. This requires the students to look back
at the activity executed by remembering or visually anticipating the steps
that still have to be carried out.
2. As compared to concrete activity, the focus here is on the iconic repre-
sentation of the operation on worksheets and in textbooks. The iconic repre-
sentation is accompanied by digital work. Here again, a visual representa-
tion of the operation or of the activity represented iconically in two dimen-
sions is necessary. The static representation requires the student to represent
the activity cognitively as a temporal-spatial one.
3. There is transition to a logical-unintuitive activity in the digit area, in-
creasingly giving up visual meaning. Nevertheless, the student is asked to
visually imagine the operations by means of intuitive correlates of activity
und to have an auditory memory in learning. Disturbances occur in case of
operative concretism and in case of impediments of long-term auditory me-
mory.
4. Automatizations in the sign area are aimed for as a last item (number
space up to 20, number facts like 1 x 1). This requires the student to have an
associative memory, which is impeded in case of disturbances of short-term
memory.
5. Situated across the previous four stages are the word problems. They
require the students to have acquired not only reading performance but also
the ability to transform verbal statements into iconic representations.
Besides, the student is required to use everyday experience and knowledge
about the world. Impediments occur in this stage through disturbances of
verbal understanding, but also through reduced ability to generate visual
images and to operate with them.
The impediments in learning arithmetical subject matter are caused by the
area-specific effects of individual cognitive weaknesses. Diagnosis thus re-
quires a holistic method in which the curricular error patterns are related to
underlying basic cognitive demand. The treatment of dyscalculia accordin-
gly runs on two tracks: The abilities (differentiated verbal understanding,
memory, intuition, spatial orientation), which are necessary for learning ma-
thematics, must be developed by suitable training methods; at the same
time, working on the subject matter and tackling erroneous strategies in or-
GIFTED AND RETARDED STUDENTS
296


der to prevent the occurrence of long-term gaps and knowledge deficits with
negative emotional effects.
2. GIFTED STUDENTS
The problem of mathematically highly gifted children has two parts: identi-
fying extreme mathematical talent and finding appropriate support for these
children. It has proved to be rather difficult to identify mathematically
highly gifted children. To be able to solve mathematically demanding pro-
blems requires a rich knowledge about numbers and number relationships,
which is normally not available to elementary school students. For this re-
ason, a (probable) extreme gift can be predicted only by means of general
personality factors in this age group. Higly gifted children become noti-
ceable as preschoolers by learning to read very early, asking questions about
complicated facts, developing curiosity for complex situations, having an
excellent memory, and easily being able to generalize to new situations and
problem formulations. They are wide awake, and their problem solutions are
characterized by originality and creativity (Bhattacharya, 1982; Heller &
Feldhusen, 1986). While the future highly gifted have high intelligence
(Jellen & Verduin, 1986), the IQ span is larger among the highly gifted than
it is between students with a learning disability and highly gifted ones
(Snider, 1986). For this reason, simply establishing IQ is only a limited
predictor of high gifts. This needs to be differentiated as to areas.
Identification via aptitude tests is made difficult by the fact that standard-
ized tests for 1st graders (e.g., the frequently used SAT) differentiate insuf-
ficiently between mathematically good students and extremely gifted ones.
The development of diagnostic methods for the second half of elementary
school must at present be considered skeptically (Wilmot, 1983). In a way
similar to that for mathematically creative adults (Michael, 1977), some
characteristics of mathematically highly gifted children can be given, howe-
ver. Already at the age of 7 or 8, they "mathematize" their environment, gi-
ving particular attention to the mathematical aspects of the phenomena they
perceive. They realize spatial and quantitative relationships and functional
dependencies in a variety of situations, that is, they see the world "by ma-
thematical eyes" (Krutetskii, 1976, p. 302). Even in the first grades, it is ob-
served that these children never tire to do mathematics and have an excel-
lent memory for mathematical materials, relationships, proofs, and methods
of solution.
Among the highly gifted children, three groups can be identified: the ana-
lytical type, the geometric type, and the harmonious type.
Analytic thinkers possess a mathematically abstract cast of mind. In their thin-
king, a well-developed verbal-logical component predominates over a weak vi-
sual-pictorial one. They function easily with abstract patterns and show no need
for visual supports when considering mathematical relationships. They will, in
fact, employ complicated analytical methods to attack problems, even when vi-
JENS HOLGER LORENZ
297


GIFTED AND RETARDED STUDENTS
sual approaches would yield much simpler solutions. They prefer abstract situati-
ons and will attempt to translate concrete problems into abstract terms whenever
possible. They may have weakly developed spatial visualization abilities, espe-
cially for three-dimensional relationships. In school they are more likely to excel
in arithmetic and algebra than in geometry.
Geometric thinkers exhibit a mathematically pictorial cast of mind. Their thinking
is driven by a well-developed visual component that impels them to interpret vi-
sually expressions of abstract mathematical relationships, sometimes in very in-
genious ways. Although their verbal-logical abilities may be quite well develo-
ped, they persist in trying to operate with visual schemes, even when a problem is
readily solved by analytic means and the use of visual images is superfluous or
difficult. Indeed, these students frequently find that functional relationships and
analytical formulas become understandable and convincing only when given a vi-
sual interpretation.
Harmonic thinkers exhibit a relative equilibrium between the extremes of the
other two types. They possess both well-developed verbal-logical and well-deve-
loped visual-pictorial abilities, and when given a problem, they are usually ca-
pable of producing solutions of both kinds. Krutetskii (1976) observed two subty-
pes among harmonic thinkers: those with an inclination for mental operations wi-
thout the use of visual means, and those with an inclination for mental operations
with the use of visual means. In other words, although harmonic thinkers are per-
fectly capable or representing relationships pictorially, some prefer to do so while
others see no need for it.
In summary, we can identify from Krutetskii's work the following significant
traits of the mathematically gifted (1976, pp. 350-351):
1. Formalized perception of mathematical material and grasp of the formal struc-
ture of problems.
2. Logical thought about quantitative and spatial relationships and the ability to
think in mathematical symbols.
3. Rapid and broad generalization of mathematical objects, relations, and operati-
ons.
4. Curtailment of mathematical reasoning and the ability to think in curtailed
structures.
5. Flexibility of mental processes.
6. Striving for clarity, simplicity, economy, and rationality of solutions.
7. Rapid and free reconstruction of a mental process as well as reversibility of
mathematical reasoning.
8. Generalized memory for mathematical relationships, characteristics, argu-
ments, proofs, methods of solution, and principles of problem-solving.
9. A mathematical cast of mind.
10. Energy and persistence in solving problems. (House, 1987, pp. 15-16)
For teaching mathematically highly gifted children, problems take two di-
rections: social integration and emotional status, and their adequate promo-
tion by teaching or by organizational measures. Their social integration into
the class is often made difficult by frequent personality factors of highly gif-
ted children. They tend to be introverted and are unable to understand, be-
cause of their quickness of mind, why other students are so slow, or are not
understood themselves. Because of their idiosyncratic style of learning, they
prefer learning independently of the others, like discovering in games and
open problem situations, and submit at best to peer teaching (Brown, 1991).
298


The pedagogical concepts to promote highly gifted students consist es-
sentially of two parts: (a) Differentiated curricula are developed (Stanley,
1977, 1979), and (b) they absolve basic curricular units in acceleration pro-
grams. Because of their individual styles of learning, mathematically highly
gifted students require a teaching method of their own. They prefer a mix-
ture of problem approach, discovery approach, and polytechnical approach,
which enables them to mathematize different areas of knowledge like social
studies, natural sciences, and so forth (Clendening & Davis, 1983).
Despite this enrichment, mathematically highly gifted students marshal
the subject matter in school, college, and university considerably faster than
their peers. For this reason, they overleap, in the school subject of mathe-
matics or in other subjects, the subject matter by one or several grades, as
far as this is possible for reasons of school organization. The results obtai-
ned with acceleration models in the past have been remarkable (Barkovich
& George, 1980; Benbow, 1991). In particular, the Study of Mathematically
Precocious Youth (SMPY) at Johns Hopkins University has followed,
among the more than 10,000 young people identified as mathematically
highly gifted and taken into the program, the development of more than
3,000 until adult age in a long-term study, confirming these results. In
contrast to fears frequently stated in the Federal Repuplic of Germany con-
cerning negative social and emotional effects in children who overleap clas-
ses and are thus transferred to a referential group inadequate for them, the
American acceleration programs proved to be favorable in emotional as-
pects as well.
To conclude, it must be stated that mathematically highly gifted students
profit most from teaching programs that stress higher reasoning strategies
and general heuristics. These must not necessarily refer to mathematics, as
these students are able to acquire the subject matter in independent learning
rather rapidly.
3. RESEARCH METHODOLOGY
The methods and instruments for studying retarded and gifted students share
a focus upon the individual and his or her specific thought processes. Thus
the clinical case study method is used for both groups. Besides worksheets
and erroneous (or highly creative) problem solutions, students are asked to
verbalize their thoughts while working on a task ("thinking aloud method").
This research method may reveal "regularities of behavior – especially
regularities that can be related to theories about how internal information
processing proceeds" (Resnick & Ford, 1981). Methodological problems
can arise when students are (partly) incapable of verbalizing their thought
processes. Retarded students may lack the necessary verbal abilities,
whereas gifted students' thoughts seem to be so fast and enriched with
diverging associations that verbalization disturbs the problem solution. Thus
a "post-thinking-aloud procedure" is often applied by interviewing students
JENS HOLGER LORENZ
299


GIFTED AND RETARDED STUDENTS
Allardice, B. S., & Ginsburg, H. P. (1983). Children's psychological difficulties in mathe-
matics. In H. P. Ginsburg (Ed.), The development of mathematical thinking (pp. 319-
350). New York: Academic Press.
Bartkovich, K. G., & George, W. C. (1980). Teaching the gifted and talented in the mathe-

Download 5.72 Mb.

Do'stlaringiz bilan baham:
1   ...   113   114   115   116   117   118   119   120   ...   176




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling