Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
Mathematics, 7(1), 7-13.
Steiner, H.-G. (Ed.). (1990). Mathematikdidaktik-Bildungsgeschichte-Wissenschafts- geschichte II. IDM-Reihe Untersuchungen zum Mathematikunterricht 15. Köln: Aulis. Steiner, H.-G., & Winter, H. (Eds.). (1985). Mathematikdidaktik-Bildungsgeschichte- Wissenschaftsgeschichte. IDM-Reihe Untersuchungen zum Mathematikunterricht 12. Köln: Aulis. Thom, R. (1973). Modern mathematics: Does it exist? In A. G. Howson (Ed.), Developments in mathematical education (pp. 194-209). Cambridge: Cambridge University Press. Vergnaud, G. (1990). Epistemology and psychology of mathematics education. In P. Nesher & J. Kilpatrick (Eds.), Mathematics and cognition: A research synthesis by the International Group for the Psychology of Mathematics Education (pp. 14-30). Cambridge: Cambridge University Press. 333 THE PHILOSOPHY OF MATHEMATICS AND THE DIDACTICS OF MATHEMATICS Paul Ernest Exeter 1. DEVELOPMENTS IN THE PHILOSOPHY OF MATHEMATICS The 20th century has seen the flowering of the philosophy of mathematics as a field of professional research. There have been a number of develop- ments of the utmost importance for the didactics of mathematics. The first has been a shift from a concern to give a prescriptive (or normative) account to a descriptive (or naturalistic) account of mathematics (Ernest, 1991, 1992). Two traditional assumptions concerning the nature of mathematics are that (a) mathematical knowledge is absolutely secure objective knowl- edge, the cornerstone of all human knowledge and rationality (the assump- tion of absolutism), and (b) that mathematical objects such as numbers, sets and geometric objects all exist in some objective superhuman realm (the as- sumption of Platonism). The prescriptive tradition has sought to reformulate mathematical knowledge in order to validate these assumptions. Recently, there has been a shift in academic philosophy of mathematics from attempts to erect absolutist epistemological systems (the projects of Logicism and Formalism) to ontological concerns, but the two assumptions of prescriptive philosophy of mathematics still dominate the field. This traditional approach is represented by Benecerraf and Putnam (1983). In contrast, a descriptive or naturalistic turn in the philosophy of mathe- matics has been emerging more recently. This is still an ill-defined move- ment, which Aspray and Kitcher (1988) term a "maverick" tradition. What binds this movement together is a shared rejection of the epistemological and ontological assumptions of prescriptive philosophy of mathematics, and a positive concern to broaden the scope of the philosophy of mathematics to that of giving an account of mathematics acknowledging the centrality of mathematical practice and social processes. Thus the concern is to describe the naturally occurring epistemological and more generally philosophical practices of the discipline, rather than to legislate normatively. Much of the rejection of the prescriptive task of the philosophy of math- ematics comes from a view, which is spreading amongst the communities of mathematicians, educationists and, to a lesser extent, philosophers, that the foundations of mathematics are not as secure as was supposed. Gödel's R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann (Eds.), Didactics of Mathematics as a Scientific Discipline, 335-349. © 1994 Dordrecht: Kluwer Academic Publishers. Printed in the Netherlands. PHILOSOPHY OF MATHEMATICS (1931) first incompleteness theorem has shown that formal axiomatics and proofs must fail to capture all the truths of most interesting mathematical systems (those at least as strong as the theory of Peano arithmetic). His sec- ond incompleteness theorem shows that, in such systems, consistency is in- demonstrable without adopting more assumptions than in the system itself. Together, these results severely weakened Hilbert's Formalism and Frege, Russell and Whitehead's Logicism. This has forced a concession from even the most computationally minded that human creativity cannot be replaced by mechanized deduction (Wang, 1974). More generally, it is increasingly accepted that any body of knowledge rests on assumptions that cannot themselves be given a secure foundation, on pain of infinite regress (Lakatos, 1976; Popper, 1979). There is also a growing dissatisfaction amongst mathematicians, philosophers and other scholars with the tradi- tional narrow focus of the philosophy of mathematics, limited to founda- tional epistemology and ontology (Tiles, 1991; Tymoczko, 1986). A number of authors have proposed that the task of the philosophy of mathematics is to account for mathematics more fully, including the "human face" of mathematics. Publications by Davis and Hersh (1980), Ernest (1991), Kitcher (1984), Lakatos (1976, 1978), Putnam (1975), Tymoczko (1976), Wang (1974) and Wittgenstein (1953, 1956), for example, have suggested new fallibilist, quasi-empirical or social constructivist views of mathematics. This descriptive or naturalistic turn in the philosophy of math- ematics is represented by Tymoczko (1986). The shift from prescriptive to descriptive accounts parallels a second shift from objectivist accounts of mathematics and mathematical knowledge to social accounts (possibly with subjective accounts seen as intermediary po- sition). Although this seems to be an immediate corollary of the descriptive turn, there is still tremendous resistance from many philosophers and math- ematicians to the notion that social processes and practices might be consti- tutively central to mathematics. Putnam (1975) and Machover (1983), for example, acknowledge that absolute foundations for mathematical knowl- edge are lacking, but are far from agreeing that mathematics is at base so- cial. Karl Popper has been very influential in promoting the view that all scientific knowledge is fallible (his philosophy of science is termed "critical fallibilism"). But he resists any notion that scientific knowledge is constitu- tively social (Popper, 1979). Even his protégé Imre Lakatos, who perhaps made the most decisive contributions to the maverick tradition in philoso- phy of mathematics, in his later years argued for the primacy of logic and objectivity over the social, at least in his accounts of scientific knowledge (Lakatos, 1978). The various different descriptive social philosophies of mathematics making up the "maverick" tradition share a number of assumptions and implications. They view mathematics as the outcome of social processes and understand mathematics to be fallible and eternally open to revision, 336 both in terms of its proofs and its concepts. They reject the notion that there is a unique, rigid and permanently enduring hierarchical structure and ac- cept instead the view that mathematics is made up of many overlapping structures. These, like a forest, dissolve and re-form. Since mathematical knowledge is always open to revision, the processes of creating mathemat- ics gain in philosophical significance, for there is no ultimate product to fo- cus on exclusively. Consequently, both the history and practice of mathe- maticians acquire a major epistemological significance (as well as needing to be accounted for naturalistically for descriptive purposes). This signifi- cance makes mathematics quasi-empirical, and not wholly disjoint from empirical science, as traditional philosophies of mathematics assert (Lakatos, 1978; Quine, 1960). The boundaries between the different areas of knowledge and human activity are not absolute, which means that mathe- matics is context-bound and value-laden, and not pure, remote and un- touched by social issues such as gender, race and culture. These concerns herald a third shift: a broadening of the concerns of the philosophy of mathematics (Körner, 1960; Tymoczko, 1986). A set of ade- quacy criteria for the accommodation of the shift towards a naturalistic and social orientation is as follows: A proposed philosophy of mathematics should . . . account for: (i) Mathematical knowledge: its nature, justification and genesis. (ii) The objects of mathematics: their nature and origins. (iii) The applications of mathematics: its effectiveness in science, technology, and other realms. (iv) Mathematical practice: the activities of mathematicians, both in the present and the past. (Ernest, 1991, p. 27) To this should be added the need for an outline account of the learning of mathematics, because the transmission of mathematical knowledge from generation to generation is central to the social practice of mathematics; also, the learning of mathematics cannot be separated from the parallel practices of mathematicians in creating and communicating new mathematical knowledge (Ernest, in press). As well as being central to the Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling