Book · January 994 citations 110 reads 2,264 authors
Download 5.72 Mb. Pdf ko'rish
|
1994 Book DidacticsOfMathematicsAsAScien
groups and learning mathematics. Paper presented at the ESRC InterSeminar,
Collaborative Learning. Oxford. Hoyles, C., & Sutherland, R. (1990). Pupil collaboration and teacher intervention in the Logo environment. Journal für Mathematik-Didaktik, 11(4), 323-343. Krummheuer, G. (1993). Orientierungen für eine màthematikdidaktische Forschung zum Computereinsatz im Unterricht. Journal für Mathematik-Didaktik, 14(1), 59-92. Laborde, C. (1982). Langue naturelle et écriture symbolique: Deux codes en interaction dans l'enseignement mathématique. Unpublished postdoctoral dissertation, IMAG, Grenoble. Leonard, F., & Grisvard, C. (1981). Sur deux règles implicites utilisées dans la comparai- son de nombres décimaux positifs. Bulletin de l'APMEP, No. 327, February 1981, pp. 47-60. COLETTE LABORDE 157 adaptation but has to be learned. That is why a positive outcome of such sit- uations requires long-term experience. 2. Working in small groups involves a multiplicity of approaches and points of view, and thus a greater conceptual work of coordination. These elements may not easily be controlled – and this fact may be one of the reasons why some teachers avoid using group work in their classes. We believe that the positive outcome of introducing a social dimension into learning situations in mathematics is related to the increased complexity of these situations due to social aspects: Perhaps the greater complexity is a major reason for more learning. WORKING IN SMALL GROUPS Margolinas, C. (1993). De l'importance du vrai et du faux en mathématiques. Grenoble: La Pensée suavage. Mugny, G. (1985). Psychologie sociale du développement cognitif. Bern: Lang. Pimm, D. (1987). Speaking mathematically: Communication in mathematics classrooms. London: Routledge & Kegan Paul. Pirie S., & Schwarzenberg R. (1988). Mathematical discussion and mathematical under- standing. Educational Studies in Mathematics, 19(4), 459-470. Polivanova, N. (1991). Particularités de la solution d'un problème combinatoire par des élèves en situation de coopération. In C. Garnier, N. Bednarz, & I. Ulanovskaya (Eds.), Après Vygotsky et Piaget - Perpectives sociale et constructiviste. Ecoles russe et occidentale. Bruxelles: De Boeck Wesmael. Rivina, I. (1991). L'organisation des activités en commun et le développement cognitif des jeunes éièves. In C. Garnier, N. Bednarz, & I. Ulanovskaya (Eds.), Après Vygotsky et Piaget - Perpectives sociale et constructiviste. Ecoles russe et occidentale (pp. 163-178). Bruxelles: De Boeck Wesmael. Robert, A., & Tenaud, I. (1989). Une expérience d’enseignement de la géométrie en Terminate C. Recherches en Didactique des Mathématiques, 9(1), 31-70. Rogoff, B. (1990). Apprenticeship in thinking. Oxford: Oxford University Press. Roubtsov, V. (1991). Activité en commun et acquisition de concepts théoriques par les écoliers sur le matériel physique. In C. Garnier, N. Bednarz, & I. Ulanovskaya (Eds.), Après Vygotsky et Piaget - Perpectives sociale et constructiviste. Ecoles russe et occidentale. Bruxelles: De Boeck Wesmael. Tudge, J. (1992). Processes and consequences of peer collaboration. Child Development, 63 (6), 1364-1379. Vygotsky, L. (1985). Pensée et langage (Sève, F., Trans.). Paris: Editions Sociales. [Original work published 1934] Yackel, E. (1991). The role of peer questioning during class discussion in second grade mathematics. In F. Furinghetti (Ed.), Proceedings of the Fifteenth PME Conference. (Vol. 3, pp. 364 - 371). Dipartimento di Matematica dell'Universita di Genova. 158 MATHEMATICS CLASSROOM LANGUAGE: FORM, FUNCTION AND FORCE 1. INTRODUCTION The expression "the state of the art" has two main senses. The first refers to a domain as a whole and usually involves a broad survey of the current field, perhaps discussing how it came to be so. The second sense invokes a single, particular view located out on the rim. In this chapter, I shall endeavour to address both senses, firstly by offering a necessarily brief survey of some recent work on mathematical classroom language, in the context of work on language and mathematics in general, before discussing a more idiosyncratic and personal set of interests and emphases, finishing with some suggestions for future areas of important work yet to be done. There are many different relationships that can be highlighted between language and mathematics. Such considerations can frequently be found un- der the heading of "the language of mathematics," though this latter phrase can be interpreted in a number of senses. It can variously mean: 1. the spoken language of the mathematics classroom (including both teacher and student talk); 2. the use of particular words for mathematical ends (often referred to as the mathematics register); 3. the language of texts (conventional word problems or textbooks as a whole, including graphic material and other modes of representation); 4. the language of written symbolic forms. General collections on the area of language and mathematics include Cocking and Mestre (1988), Durkin and Shire (1991), Ellerton and Clements (1991), and a review of the area from a psychological research perspective is offered by Laborde (1990). It is important to note that the phrase "the language of mathematics" can also refer to language used in aid of an individual doing mathematics alone (and therefore include, e.g., "inner speech"), as well as language employed with the intent of communicating with others. Language can be used both to conjure and control mental images in the service of mathematics. As Douglas Barnes (1976) has insightfully commented: "Communication is not the only function of language." And the Canadian literary critic Northrop R. Biehler, R. W. Scholz, R. Sträßer, B. Winkelmann (Eds.), Download 5.72 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling