Chapter · July 012 citation reads 9,926 author


Composition of Feature Vector


Download 0.91 Mb.
Pdf ko'rish
bet12/20
Sana31.03.2023
Hajmi0.91 Mb.
#1312783
1   ...   8   9   10   11   12   13   14   15   ...   20
Bog'liq
6.Chapter-02 (1)

Composition of Feature Vector 
We calculated 39 Features from each frame: 
 
12 MFCC Features. 
 
12 Deltas MFCC. 
 
12 Delta-Deltas MFCC. 
 
1 Energy Feature. 
 
1 Delta Energy Feature. 
 
1 Delta-Delta Energy Feature. 
2.4 | ARTIFICIAL NEURAL NETWORKS 
 
2.4.1 | Introduction 
 
We have used ANNs to model our system and train voices and test it to 
classify it into words categories which return actions. And here we will make an 
overview about artificial neural networks.
The original inspiration for the term Artificial Neural Network came from 
examination of central nervous systems and their neurons, axons, dendrites, and 
synapses, which constitute the processing elements of biological neural networks 
investigated by neuroscience. In an artificial neural network, simple artificial 
nodes, variously called "neurons", "neurodes", "processing elements" (PEs) or 


Chapter 2 | Speech Recognition
23
"units", are connected together to form a network of nodes mimicking the 
biological neural networks — hence the term "artificial neural network". 
Because neuroscience is still full of unanswered questions, and since there are 
many levels of abstraction and therefore many ways to take inspiration from the 
brain, there is no single formal definition of what an artificial neural network is. 
Generally, it involves a network of simple processing elements that exhibit 
complex global behavior determined by connections between processing elements 
and element parameters. While an artificial neural network does not have to be 
adaptive per se, its practical use comes with algorithms designed to alter the 
strength (weights) of the connections in the network to produce a desired signal 
flow. 
These networks are also similar to the biological neural networks in the sense 
that functions are performed collectively and in parallel by the units, rather than 
there being a clear delineation of subtasks to which various units are assigned (see 
also connectionism). Currently, the term Artificial Neural Network (ANN) tends to 
refer mostly to neural network models employed in statistics, cognitive psychology 
and artificial intelligence. Neural network models designed with emulation of the 
central nervous system (CNS) in mind are a subject of theoretical neuroscience and 
computational neuroscience. 
In modern software implementations of artificial neural networks, the 
approach inspired by biology has been largely abandoned for a more practical 
approach based on statistics and signal processing. In some of these systems
neural networks or parts of neural networks (such as artificial neurons) are used as 
components in larger systems that combine both adaptive and non-adaptive 
elements. While the more general approach of such adaptive systems is more 
suitable for real-world problem solving, it has far less to do with the traditional 
artificial intelligence connectionist models. What they do have in common, 
however, is the principle of non-linear, distributed, parallel and local processing 
and adaptation. Historically, the use of neural networks models marked a paradigm 
shift in the late eighties from high-level (symbolic) artificial intelligence
characterized by expert systems with knowledge embodied in if-then rules, to low-
level (sub-symbolic) machine learning, characterized by knowledge embodied in 
the parameters of a dynamical system. 

Download 0.91 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   ...   20




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling