Chekli ayirmalar usuli haqida tushunchalar
Download 332.37 Kb.
|
6.Maruza. Chegaraviy masalalarni chekli ayirmalar usuli yordamida yechish asoslari
- Bu sahifa navigatsiya:
- Bir jinisli bo’lmagan parabolik tenglama uchun aralash masala.
{Paskal tili dasturi }
uses crt, dos; label 1; var y,h,a,b,t1,c,d,g,w,e,s,k:real; n,m,i,j:integer; x,t:array[0..60] of real; u:array[0..60,0..60] of real; function fnf(x:real):real; begin fnf:=sin(3.14159*x); end; function fnf1(t:real):real; begin fnf1:=0 end; function fnf2(t:real):real; begin fnf2:=0 end; begin a:=1; s:=1; t1:=0.025; h:=0.1; n:=5; m:=5; write(‗X argument chegaralari a,b ni kiriting=‘); readln(a,b); write(‗X argument kesmada bo‗linishlar qadami H ni kiriting=‘); readln(H); write(‗T argument yuqori chegarasi T1 ni kiriting=‘); readln(T1); k:=h*h/2; write(' t/x':6); for i:=0 to n do begin x[i]:=i*h; write(' ',x[i]:6:4); end; writeln; for j:=0 to 2*m do for i:=0 to 2*n do begin t[j]:=j*k; u[0,j]:=fnf1(t[j]); u[n,j]:=fnf2(t[j]); x[i]:=i*h; u[i,0]:=fnf(x[i]); end; for j:=0 to 2*m do for i:=1 to 2*n do begin u[i,j+1]:=(u[i-1,j]+4*u[i,j]+u[i+1,j])/6 end; for j:=0 to m do begin t[j]:=j*k; write(t[j]:5:4); for i:=0 to n do begin write(' ',u[i,j]:6:4); end; writeln; end; readln; end. Bir jinisli bo’lmagan parabolik tenglama uchun aralash masala. To’r usuli bilan bir jinisli bo’lmagan parabolik turdagi tenglama uchun aralash masalani yechish mumkin . Bu holda tugunlarning oshkor holdagi sxemasida foydalangan holda ayirmalar tenglamasi quydagicha bo’ladi: Bunda bo’lsa, bo’ladi, bo’lsa, bo’ladi. Bu holda xatolikni quydagicha baholash o’rinlidir. Yuqoridagi tenglama uchun : Bu yerda Misol. Ayirmalar tenglamasidan foydalanib, tenglamaning . shartni qanoatlantiruvchi taqribiy yechimini topamiz. Yechish : O’zgaruvchi argument x uchun h=0.1 qadam tanlaymiz. bo’lganligidan t argument uchun qadam l= /2=0.005 1-jadvalni boshlang’ich va chegaraviy qiymatlari bilan hamda simmetriklikni e’tiborga olib faqat x=0,0.1,0.2,0.3,0.4,0.5, lar uchun to’ldiramiz u(x,t) funksiya birinchi qatlamdagi qiymatlarni boshlang’ich va chegaraviy shartlardan foydalanib, j=0 , bo’lganda formuladan foydalanamiz: Bu holda va hakazo ning i=2,3,4,5 larda ham qiymatlarini topib jadvalni to’ldiramiz. asosan: ikkinchi qatlamda j=1 bo’lganda formulaga bo’ladi. Huddi shuningdek, ning qiymatlarini 0.010, 0.015, 0.020, 0.025 lar uchun ham hisoblaymiz. Jadvalning oxirida aniq yechim va ayirma ning qiymatlarini t=0.005 uchun berilgan xatolikni takkoslash uchun formuladan foydalanib quyidacha baholashni kuramiz. Berilgan masala uchun bu yerda 9 ‘---------------DASTUR ---------------------- 10 ‘-- parabolik turdagi bir jinsli bulmagan xususiy hosilali tenglama ---- 12 ‘------------uchun chegaraviy masalaning yechimini topish--------- 14 REM SAVE"‘arf0.bas",a 20 DIM U(60,60),X(60),T(60) 30 DEF FNF0(X,T)=3*T*SIN(X) 40 DEF FNF(X)=SIN(3.14*X) 50 DEF FNF1(T)=0 60 DEF FNF2(T)=0 70 READ A,B,T1,H 72 INPUT" X argument yuqori chegarasi S ni kiring="; s 74 INPUT” X argument kesmasidagi bo‘linish kadami H ni kirieing=”; h 76 INPUT” T argument yuqori chegarasi T1 ni kiring="; t1 80 K=H*H/2 : N=B/H : M=T1/K 90 FOR I=0 TO N : X(I)=I*H 100 FOR J=0 TO M : T(J)=J*K : F0(I,J)=FNF0(X(I),T(J)) 110 U(1,J)=FNF1(T(J)) : U(N,J)=FNF2(T(J)) :NEXT J :NEXT I 120 FOR I=0 TO N 130 U(I,0)=FNF(X(I)) 140 NEXT I 150 FOR J=0 TO M : FOR I=1 TO N 160 U(I,J+1)=(U(I-1,J)+U(I+1,J))/2+K*F0(I,J) 170 NEXT I : NEXT J : GOSUB 230 : PRINT ": T/X "; 180 FOR I=0 TO N-5 : PRINT " :";USING "##.####";X(I);:NEXT I: PRINT " :" 190 GOSUB 230 200 FOR J=0 TO M : PRINT ": ";USING "##.####";T(J);: FOR I=0 TO N-5 210 PRINT " :";USING "##.####";U(I,J); 220 NEXT I : PRINT " :" : GOSUB 230 : NEXT J : GOTO 260 230 PRINT "-----------"; : FOR I=0 TO N-5 : PRINT "---------"; : NEXT I 240 PRINT : RETURN 250 DATA 1,1,0.025,.1 260 END RUN ---------------------------------------------------------------------------- : T/X : 0.0000 : 0.1000 : 0.2000 : 0.3000 : 0.4000 : 0.5000 : ----------------------------------------------------------------------------- : 0.0000 : 0.0000 : 0.3089 : 0.5875 : 0.8087 : 0.9509 : 1.0000 : ----------------------------------------------------------------------------- : 0.0050 : 0.0000 : 0.2938 : 0.5588 : 0.7692 : 0.9044 : 0.9511 : ----------------------------------------------------------------------------- : 0.0100 : 0.0000 : 0.2794 : 0.5315 : 0.7316 : 0.8602 : 0.9046 : ----------------------------------------------------------------------------- : 0.0150 : 0.0000 : 0.2658 : 0.5055 : 0.6959 : 0.8182 : 0.8605 : ----------------------------------------------------------------------------- : 0.0200 : 0.0000 : 0.2528 : 0.4809 : 0.6619 : 0.7783 : 0.8185 : ----------------------------------------------------------------------------- : 0.0250 : 0.0000 : 0.2405 : 0.4574 : 0.6297 : 0.7403 : 0.7787 : ----------------------------------------------------------------------------- Ok Quyida issiqlik oʻtkazuvchanlikning chiziqli masalalarini qaraymiz. Download 332.37 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling