Cheksiz katta funksiyalar Reja
Chegaralangan va chegaralanmagan sonli ketma-ketliklar
Download 335.5 Kb.
|
Cheksiz katta funksiyalar
- Bu sahifa navigatsiya:
- 3. Cheksiz katta ketma-ketliklar hamda ularning xossalari 5-ta’rif.
2. Chegaralangan va chegaralanmagan sonli ketma-ketliklar.
2-ta’rif. sonlar ketma – ketligi uchun shunday ( son) son mavjud bo’lib, ketma-ketlikning istalgan elementi uchun tengsizlik bajarilsa ketma-ketlik yuqoridan (quyidan) chegaralangan deyiladi. 3-ta’rif. sonlar ketma-ketligi quyidan va yuqoridan chegaralangan bo’lsa, ya'ni shunday va sonlar mavjud bo’lib, ketma-ketlikning istalgan elementi uchun tengsizlik bajarilsa, ketma-ketlik chegaralangan deyiladi. 4-ta’rif. sonlar ketma-ketligi uchun shunday musbat son mavjud bo’lib, element mavjud bo’lib, (ya'ni yoki ) tengsizlik bajarilsa sonlar ketma-ketligi chegaralanmagan deyiladi. Yuqoridagi ta’riflardan kelib chiqadiki, ketma-ketlik yuqoridan chegaralangan bo’lsa, uning hamma elementlari oraliqqa tegishli, ketma-ketlik quyidan chegaralangan bo’lsa, uning hamma elementlari oraliqqa tegishli, yuqoridan va quyidan chegaralangan bo’lsa, oraliqqa tegishli bo’ladi. Misollar: 1) 1, 2, 3, ..., , ... sonlar ketma-ketligi quyidan chegaralangan, lekin yuqoridan chegaralangan; 2) -1, -2, -3, ..., - , ... sonlar ketma-ketligi yuqoridan chegaralangan; 3) 1, sonlar ketma-ketligi chegaralangan, chunki uning hamma elementlari uchun tengsizlik bajariladi, bunda bo’ladi; 4) -1, 2, -3, 4, -5, ..., ,... sonlar ketma-ketligi chegaralanmagan, chunki qanday A son olmaylikki, bu ketma-ketlik ichida tengsizlikni qanoatlantiruvchi elementlari mavjud bo’ladi. 3. Cheksiz katta ketma-ketliklar hamda ularning xossalari 5-ta’rif. sonlar ketma-ketligi istalgan son uchun, shunday raqam mavjud bo’lib, hamma lar uchun tengsizlik bajarilsa, sonlar ketma-ketligi cheksiz katta ketma-ketlik deyiladi. cheksiz katta ketma-ketlik chegaralanmagan bo’ladi. 6-ta’rif. Istalgan son uchun shunday raqam mavjud bo’lib, lar uchun tengsizlik bajarilsa ketma-ketlik cheksiz Cheksiz katta sonlar ketma-ketligi deyiladi. Misollar: 1) natural sonlar ketma-ketligi cheksiz katta ketma-ketlikdir; 2) sonlar ketma-ketligi cheksiz Cheksiz katta dir, Cheksiz Cheksiz katta va cheksiz katta ketma-ketliklar orasida ushbu bog’liqlik bor. Download 335.5 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling