Chemical composition and bioactive compounds of Cucurbitaceae seeds: Potential sources for new trends of plant oils


Download 0.8 Mb.
Pdf ko'rish
bet11/12
Sana06.05.2023
Hajmi0.8 Mb.
#1434557
1   ...   4   5   6   7   8   9   10   11   12
Bog'liq
Chemicalcompositionandbioactivecompoundsof

4. Conclusion 
The present study demonstrated that pumpkin, watermelon, and melon seeds contain 
many nutrients as protein, fibers and minerals which indicate their potential uses as dietary 
supplement in relevant applications. When compared to pumpkin and watermelon seed oils, 
melon seed oil was a rich source of many bioactive substances such as phytosterols and 
phenolic compounds. These bioactive compounds may be used as natural antioxidants for 
industrial applications. Besides, the high-unsaturated fatty acid level makes the watermelon 
seed oil nutritionally valuable. In the light of these favourable characteristics, appropriate use 
of melon, watermelon, and pumpkin seeds makes them a good example for the valorisation of 
processing fruits’ by-products. 
Acknowledgments
The authors would like to warmly thank Mr. Anis Tounsi, a professor of ESP at the 
Higher Institute of Technological Studies of Zaghouane, for his valuable efforts to proofread 
this literature. 
Funding 
This research has not received any specific grant of whatsoever kind from any funding 
agencies in the public, commercial, or non-profit sectors. 
ACCEPTED MANUSCRIPT


23 
Conflict of interest 
The auth
o
rs solemnly declare n
o
conflict 
o
f interest. 
References 
Ahmad, R., Hashim, H.M., Noor, Z.M., Ismail, N.H., Salim, F., Lajis, N.H., Shaari, K., 2011. 
Antioxidant and antidiabetic potential of Malaysian uncaria. Res. J. Med. Plant 5(5), 
587-595. 
Arslan, F.N., Akin, G., Yilmaz, İ., 2017. Physicochemical characteristics, pesticide residue 
and aflatoxin contamination of cold pressed pumpkin seed (Cucurbita pepo L.) oils 
from central Anatolia region of Turkey. Anadolu Univ. J. Sci. Tech. A- Appl. Sci. 
Eng. 18(2), 468-483. 
Al-Khalifa, A.S., 1996.Physicochemical characteristics, fatty acid composition, and 
lipoxygenase activity of crude pumpkin and melon seed oils. J. Agric. Food 
Chemistry, 44, 964-966. 
AOAC, 1990. In: Firestone, D. (Ed.), Official Methods of Analysis of the Association of the 
Official Analytical Chemists. Association of the Official Analytical Chemists, Inc., 
VA, USA. 
AOCS, 1997.Official Methods and Recommended Practices of the American Oil Chemist’s 
Society, 5
th
ed. AOCS Press, Champaign, USA. 
Chiavaro, E., Vittadini, E., Rodriguez-Estrada, M.T., Cerretani, L., Bendini, A., 2008. 
Monovarietal extra virgin olive oils: correlation between thermal properties and 
chemical composition: heating thermograms. J. Agric. Food Chem. 56, 496-501

Codex Alimentarius Commission, 1982. Recommended Internal Standards Edible Fats and 
Oils, 1
st
ed.; FAO/WHO: Rome, Italy,Volume XI. 
ACCEPTED MANUSCRIPT


24 
Delfan-Hosseini, S., Nayebzadeh, K., Mirmoghtadaie, L., Kavosi, M., Marzieh Hosseini, S., 
2017. Effect of extraction process on composition, oxidative stability and rheological 
properties of purslane seed oil. Food Chem. 222, 61-66. 
El-Adawy, T.A., Taha, K.M., 2001. Characteristics and composition of different seed oils and 
flours. Food Chem. 74, 47-54. 
European Economic Community, 1991. Characteristics of olive and olive pomace oils and 
their analytical methods, Regulation EEC/2568/1991. Journal of the European 
Community L248, 1-82. 
Górnaś, P., Pugajeva, I., Seglina, D., 2014. Seeds recovered from by-products of selected fruit 
processing as a rich source of tocochromanols: RP-HPLC/FLD and RP-UPLC-
ESI/MSn study. Eur. Food Res. Technol. 239, 519-524. 
Górnaś, P., Rudzińska, M., 2016. Seeds recovered from industry by-products of nine fruit 
species with a high potential utility as a source of unconventional oil for biodiesel and 
cosmetic and pharmaceutical sectors. Ind. Crops Prod.83, 329-338. 
Górnaś, P., Soliven, A., Seglina, D., 2015. Seed oils recovered from industrial fruit by-
products are a rich source of tocopherols and tocotrienols: Rapid separation of α/β/γ/δ 
homologues by RP-HPLC/FLD. Eur. J. Lipid Sci. Technol. 117, 773-777. 
Guergouri, F.Z., Sobhi, W., Benboubetra, M., 2017.Antioxidant activity of Algerian Nigella 
Sativa total oil and its unsaponifiable fraction. J. Phytopharmacol. 6(4), 234-238. 
Halbault, L., Barbe, C., Aroztegui, M., De La Torre, C., 1997. Oxidative stability of semisolid 
excipient mixtures with corn oil and its implication in the degradation of vitamin A. 
Int. J. Pharmaceut.147, 31-41. 
Hashemi, S.M.B., Khaneghag, A.M., Koubaa, M., Lopez-Cervantes, J., Yousefabad, S.H.A., 
Hosseini, S.F., Karimi, M., Motazedian, A., Asadifard, S., 2017. Novel edible oil 
sources: microwave heating and chemical properties. Food Res. Int. 92, 147-153. 
ACCEPTED MANUSCRIPT


25 
Hsu, S.Y., Yu, S.H., 2002. Comparisons on 11 plant oil fat substitutes for low fat kung-wans. 
J. Food Eng.51, 215-220. 
Hwang, W.K., 1989. Food Testing and Analysis. Light Industry Press, China
.
Jiménez Márquez, A., Beltran Maza, G., 2003. Application of differential scanning 
calorimetry (DSC) at the characterization of the virgin olive oil. Grasas Aceites 54, 
403-409 (English abstract available). 
Kulaitienė, J., Černiauskienė, J., Jarienė, E., Danilčenko, H., Levickienė, D., 2018. 
Antioxidant activity and other quality parameters of cold pressing pumpkin seed oil. 
Not.Bot. Horti Agrobo. 46(1), 161-166. 
Loo, A.Y., Jain, K., Darah, I., 2008. Antioxidant activity of compounds isolated from the 
pyroligneous acid, Rhizophora apiculata. Food Chem. 107(3), 1151-1160. 
Lopes-Lutz, D., Alviano, S. D., Alviano, C. S., Kolodziejczyk, P. P., 2008. Screening of 
chemical composition, antimicrobial and antioxidant activities of Artemisia essential 
oils. Phytochemistry 69, 1732-1738. 
Mallek-Ayadi, S., Bahloul, N., Kechaou, N., 2018. Chemical composition and bioactive 
compounds of Cucumismelo L. seeds: Potential source for new trends of plant oils. 
Process Saf. Environ. 113, 68-77. 
Meddeb, W., Rezig, L., Abderrabba, M., Lizard, G., Mejri, M., 2017. Tunisian milk thistle: an 
investigation of the chemical composition and the characterization of its cold-pressed 
seed oils. Int. J. Mol. Sci.18, 2582-2595. 
Mitra, P., Ramaswamy, H.S., Chang, K.S., 2009. Pumpkin (Cucurbita maxima) seed oil 
extraction using supercritical carbon dioxide and physicochemical properties of the 
oil. J. Food Eng. 95, 208-213. 
Mokwala, P.W., Shai, T. 2017. Physicochemical analysis of seed oil from indigenous 
watermelons.doi:10.1016/j.sajb.2017.01.120 
ACCEPTED MANUSCRIPT


26 
Murković, M., Hillebrand, A., Winkler, H., Pfannhauser, W., 1996.Variability of vitamin E 
content in pumpkin seeds (Cucurbita pepo L.). Z. Leben. Unters. For. 202, 275-278. 
Nakbi, A., Issaoui, M., Dabbou, S., Koubaa, N., Echbili, A., Hammami, M., Attia, N., 
2010.Evaluation of antioxidant activities of phenolic compounds from two extra virgin 
olive oils. J. Food Compos. Anal. 23, 711-715. 
Neᵭeral, S., Škevin, D., Kraljić,K., Obranović, M., Papeša,S., Nataljaku, A., 2012. Chemical 
composition and oxidative stability of roasted and cold pressed pumpkin seed oils. J. 
Am. Oil Chem. Soc. 981763-1770. 
Neff, W.E., Mounts, T.L., Rinsch, W.M., Konishi, H., 1993. Photooxidation of soybean oils 
as affected by triacyglycerol composition and structure. J. Am. Oil Chem. Soc. 71, 
163-168. 
Neff, W.E., Mounts, T.L., Rinsch, W.M., Konishi, H., Agaimy, E.I., 1994. Triacylglycerols
with altered fatty acid compositions as affected by triacylglycerol composition and 
structure. J. Am. Oil Chem. Soc. 71, 1101-1109. 
NF EN ISO 12228, 1999. Association Française de Normalisation, European Norm, NF EN 
ISO 12228 May 1999; French norm T60-258: animal and vegetable fats and oils- 
determination of individual and total sterols contents- gas chromatographic method. 
AFNOR. Paris. 18 pp. 
Nyam, K.L., Tan, C.P., Lai, O.M., Long, K., Che Man, Y.B., 2009.Physicochemical 
properties and bioactive compounds of selected seed oils. Food Sci. Tech. 42

1396-
1403. 
Ramazan, A., Mehmet Musa, Ö., Gülşah, K., Nesim, D., 2012. Some physico-chemical 
properties of edible and forage watermelon seeds. Iran. J. Chem. Chem. Eng. 31(4), 
41-47. 
ACCEPTED MANUSCRIPT


27 
Rezig, L., Chouaibi, M., Msaada, K., Hamdi, S., 2012. Chemical composition and profile 
characterization of pumpkin (Cucurbita maxima) seed oil. Ind. Crops Prod. 37, 82-87. 
Rezig, L., Chouaibi, M., Ojeda-Amador R.M., Gomez-Alonso, S., Salvador, M.D., Fregapane, 
G., Hamdi, S., 2018. Cucurbita maxima pumpkin seed oil: from the chemical 
properties to the different extracting techniques. Not. Bot. Horti Agrobo. 46(2), 663-
669. 
Rodríguez-Morató, J., Xicota, L., Fitó, M., Farré, F., Dierssen, M., de la Torre, R., 2015.
Potential role of olive oil phenolic compounds in the Prevention of 
neurodegenerative diseases. Molecules 20, 4655-4680. 
Samet, I., Han, J., Jlaiel, L., Sayadi, S., 2014. Olive (Olea europaea) leaf extract induces 
apoptosis and monocyte/macrophage differenciation in human chronic myelogenous 
leukemia K562 cells: Insight into the underlying mechanism. Oxid. Med. Cell. 
Longev., 2014, 1-16. 
Sarwar Alam, M., Kaur, G., Jabbar, Z., Javed, K., Athar, M., 2007. Eruca sativa seeds possess 
antioxidant activity and exert a protective effect on mercuric chloride induced renal 
toxicity. Food Chem. Toxicol. 45, 910-920. 
Seymen, M., Uslu, N., Türkmen, Ö., Al Juhaimi, F., Özcan, M.M., 2016. Chemical 
compositions and mineral contents of some hull-less pumpkin seed and oils. J. Am. 
Oil Chem. Soc. 93, 1095-1099
.
Siddeeg, A., Xu, Y.S., Jiang, Q.X., Xia, W.S., 2014. Chemical and nutritional properties of 
seinat (Cucumis melo var. tibish) seeds. J. Sci. Ind. Res. 9(2), 495-499. 
STATISTICA, 1998. Statsoft, Inc, Tulsa, OK, USA. 
Tan, C.P., Che Man, Y.B., 2000. Differential scanning calorimetric analysis of edible oils: 
comparison of thermal properties and chemical composition. J. Am. Oil Chem. Soc. 
77, 142-155. 
ACCEPTED MANUSCRIPT


28 
Tan, C.P., Che Man, Y.B., 2002. Comparative differential scanning calorimetric analysis of 
vegetable oils: I. Effects of heating rate variation. Phytochem. Analysis 13, 129-141. 
Teotia, M.S., Ramakrishna, P., 1984. Chemistry and technology of melon seeds. J. Food Sci. 
Techn. 21, 332-340. 
Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fibre, neutral 
detergent fiber, and non starch carbohydrates in relation to animal nutrition. J. Dairy 
Sci. 74, 3583-3597. 
Veronezi, C.M., Jorge, N., 2015. Chemical characterization of the lipid fractions of pumpkin 
seeds. Nutr. Food Sci., 45 (1), 164-173. 
Veronezi, C.M., Jorge, N., 2018. Effect of Carica papaya and Cucumis melo seed oils on the 
soybean oil stability. Food Sci. Biotechnol., 27(4), 1031-1040. 
Wani, A. A., Sogi, D. S., Singh, P., Wani, I. A., Shivhare, U. S., 2011a. Characterization and 
functional properties of watermelon (Citrullus lanatus) seed proteins. J. Sci. Food 
Agric. 91, 113-121. 
Wani, A. A., Sogi, D. S., Singh, P., Wani, I. A., Shivhare, U. S., 2011b. Characterization and 
functional properties of watermelon (Citrullus lanatus) seed protein isolates and salt 
assisted protein concentrates. Food Sci. Biotechnol. 20(4), 877-887. 
ACCEPTED MANUSCRIPT


29 
-7
-6
-5
-4
-3
-2
-1
0
1
-60
-40
-20
0
20
40
60
80
100

Download 0.8 Mb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling