Chemistry and catalysis advances in organometallic chemistry and catalysis
REFERENCES 1. D´ıez-Gonz´alez, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009
Download 11.05 Mb. Pdf ko'rish
|
REFERENCES 1. D´ıez-Gonz´alez, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109 , 3612. 2. Vignolle, J.; Catton, X.; Bourissou, D. Chem. Rev. 2009, 109 , 3333. 3. Fortman, G. C.; Nolan, S. P. Chem. Soc. Rev. 2011, 40 , 5151. 4. Boyarskiy, V. P.; Luzyanin, K. V.; Kukushkin, V. Yu. Coord. Chem. Rev. 2012, 256 , 2029. 5. Hahn, F. E.; Jahnke, M. C. Angew. Chem. Int. Ed. Engl. 2008, 47 , 3122. 6. Glorius, F. Top. Organomet. Chem. 2007, 21 , 1. 7. Peris, E. Top. Organomet. Chem. 2007, 21 , 83. 8. Liddle, S. T.; Edworthy, I. S.; Arnold, P. L. Chem. Soc. Rev. 2007, 36 , 1732. 9. Schuster, O.; Yang, L.; Raubenheimer, H. G.; Albrecht, M. Chem. Rev. 2009, 109 , 3445. 10. Michelin, R. A.; Pombeiro, A. J. L.; Guedes da Silva, M. F. C. Coord. Chem. Rev. 2001, 218 , 75. 11. Herrmann, W. A.; ¨ Ofele, K.; Preysing, D. V.; Herdtweck, E. J. Organomet. Chem. 2003, 684 , 235. 12. Frey, G. D.; Herrmann, W. A. J. Organomet. Chem. 2005, 690 , 5876. 13. Frey, G. D.; Herdtweck, E.; Herrmann, W. A. J. Organomet. Chem. 2006, 691 , 2465. 14. Snead, D. R.; Chiviriga, I.; Abboud, K. A.; Hong, S. Org. Lett. 2009, 11 , 3274. 15. Denk, K.; Sirsch, P.; Herrmann, W. A. J. Organomet. Chem. 2002, 649 , 219. 16. Lee, M.-T.; Hu, C.-H. Organometallics 2004, 23 , 976. 17. Slaughter, L. M. Comm. Inorg. Chem. 2008, 29 , 46. 18. Alder, R. W.; Allen, P. R.; Murray, M.; Orpen, A. G. Angew. Chem. Int. Ed. Engl. 1996, 35 , 1121. 19. Arduengo III, A. J.; Goerlich, J. R.; Marshall, W. J. J. Am. Chem. Soc. 1995, 117 , 11027. 20. Arduengo III, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113 , 361. 21. Rosen, E. L.; Sanderson, M. D.; Saravanakumar, S.; Bielawski, C. W. Organometallics 2007, 26 , 5774. 22. Rosen, E. L.; Sung, D. H.; Chen, Z.; Lynch, V.; Bielawski, C. W. Organometallics 2010, 29 , 250. 23. Collins, M. S.; Rosen, E. L.; Lynch, V.; Bielawski, C. W. Organometallics 2010, 29 , 3047. 24. Snead, D. R.; Inagaki, S.; Abboud, K. A.; Hong, S. Organometallics 2010, 29 , 1729. 25. Alder, R. W.; Blake, M. E.; Bufali, S.; Butts, C. P.; Orpen, A. G.; Sch¨utz, J.; Williams, S. J. J. Chem. Soc. Perkin Trans. 1 2001,
26. Alder, R. W.; Chaker, L.; Paolini, F. P. V. Chem. Commun. 2004, 2172. 27. Wicherink, S. C.; Scheeren, J. W.; Nivard, R. J. F. Synthesis 1977, 273. 28. Dhudshia, B.; Thadani, A. N. Chem. Commun. 2006, 668. 29. Kremzow, D.; Seidel, G.; Lehmann, C. W.; Furstner, A. Chem. Eur. J. 2005, 11 , 1833. 30. Luzyanin, K. V.; Guedes da Silva, M. F. C.; Kukushkin,V. Yu.; Pombeiro, A. J. L. Inorg. Chim. Acta 2009, 362 , 833. 31. Luzyanin, K. V.; Pombeiro, A. J. L.; Haukka, M.; Kukushkin, V. Yu. Organometallics 2008, 27 , 5379. 32. Chay, R. S.; Luzyanin, K. V. Inorg. Chim. Acta 2012, 380 , 322. 33. Luzyanin, K. V.; Tskhovrebov, A. G.; Carias, M. C.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L.; Kukushkin, V. Yu. Organometallics
34. Tskhovrebov, A. G.; Luzyanin, K. V.; Kuznetsov, M. L.; Sorokoumov, V. N.; Balova, I. A.; Haukka, M.; Kukushkin, V. Yu. Organometallics 2011, 30 , 863. 35. Alonso, F.; Beletskaya, I. P.; Yus, M. Tetrahedron 2008, 64 , 3047. 36. Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44 , 4442.
REFERENCES 155 37. Miyaura, N. Top. Curr. Chem. 2002, 219 , 11. 38. Suzuki, A. Proc. Jpn. Acad. Ser. B 2004, 80 , 359. 39. Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58 , 9633. 40. Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41 , 1461. 41. Navarro, O.; Kaur, H.; Mahjoor, P.; Nolan, S. P. J. Org. Chem. 2004, 69 , 3173. 42. Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S.P. J. Am. Chem. Soc. 2006, 128 , 4101. 43. Moncada, A. I.; Manne, S.; Tanski, J. M.; Slaughter, L. M. Organometallics 2006, 25 , 491. 44. Moncada, A. I.; Khanb, M. A.; Slaughter, L. M. Tetrahedron Lett. 2005, 46 , 1399. 45. Abdur-Rashid, K.; Amoroso, D.; Tsang, C.-W.; Jia, W. WO 2011127579 A1 20111020. 46. Chay, R. S.; Luzyanin, K. V.; Kukushkin, V. Y.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. Organometallics 2012, 31 , 2379. 47. Hashmi, A. S. K.; Lothschutz, C.; Boohling, C.; Rominger, F. Organometallics 2011, 30 , 2411. 48. Belestskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100 , 3009. 49. Crisp, G. T. Chem. Soc. Rev. 1998, 27 , 427. 50. Shibasaki, M.; Boden, C. D. J.; Kojima, A. Tetrahedron 1997, 53 , 7371. 51. Franz´en, R. Can. J. Chem. 2000, 78 , 957. 52. Fu, G. C. Acc. Chem. Res. 2008, 41 , 1555. 53. Sonogashira, K. In Metal-Catalyzed Cross-Coupling Reactions; Stang, P. J.; Diederich, F., Eds.; John Wiley & Sons, Ltd: Weinheim, 1998, pp. 203–229. 54. Negishi, E. -I.; Anastasia, L. Chem. Rev. 2003, 103 , 1979. 55. Batey, R. A.; Shen, M.; Lough, A. J. Org. Lett. 2002, 4 , 1411. 56. Altenhoff, G.; W¨urtz, S.; Glorius, F. Tetrahedron Lett. 2006, 47 , 2925. 57. John, A.; Shaikh, M. M.; Ghosh, P. Dalton Trans. 2009, 10581. 58. Ray, L.; Barman, S.; Shaikh, M. M.; Ghosh, P. Chem. Eur. J. 2008, 14 , 6646. 59. Samantaray, M. K.; Shaikh, M. M.; Ghosh, P. J. Organomet. Chem. 2009, 694 , 3477. 60. Bailar Jr, J. C.; Itatani, H. Inorg. Chem. 1965, 4 , 1618. 61. Balova, I. A.; Morozkina, S. N.; Sorokoumov, V. N.; Vinogradova, O. V.; Knight, D. W.; Vasilevsky, S. F. Eur. J. Org. Chem. 2005, 882.
62. Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2 , 27. 63. Hartwig, J. F. Acc. Chem. Res. 2008, 41 , 1534. 64. Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219 , 131. 65. Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2008, 47 , 6338. 12 SYNTHESIS OF METALLOCENES VIA METATHESIS IN METAL COORDINATION SPHERES Antoni Pietrzykowski* and W Ł odzimierz Buchowicz Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland 12.1 INTRODUCTION Olefin metathesis is a transition-metal-catalyzed reaction commonly applied in organic and polymer chemistry [1]. Therefore, application of olefin metathesis in coordination and organometallic chemistry as a synthetic tool might initially appear as something unusual, however providing that (i) the metal-containing substrate is sufficiently stable to withstand the presence of the catalyst and (ii) the ligand(s) feature at least one olefinic moiety, this approach proved to be successful. The development and commercial availability of Grubbs’ catalysts rendered the former condition relatively easy to fulfill, while the latter is limited only by our imagination. The examples of metathesis in metal coordination spheres present in the literature until 2003 were described in the book by Bauer and G ł adysz [2] and are discussed briefly in this review. This chapter is arranged by the well-recognized types of olefin metathesis reactions, that is, ring-opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) polymerization, ring-closing metathesis (RCM), and cross- metathesis (CM) (Fig. 12.1). Examples of alkyne metathesis are also included. Catalysts applied in reactions described in this chapter are depicted in Fig. 12.2. Symbols of catalysts shown in this figure are used in the text.
Ferrocene is a very robust organometallic complex that has been incorporated into an impressive number of molecules with various applications and properties. Therefore, ferrocene-containing polymers have been pursued for many possible applications by different routes. Three metathesis-based approaches toward metallocene-containing polymers (mainly ferrocenes) have been reported so far: (i) homo-ROMP or co-ROMP of olefins bearing a metallocenyl substituent, (ii) ROMP of strained ansa-metallocenes, and (iii) ADMET polymerization of bis(alkenyl)metallocenes, including ADMET copolymerization with α,ω-dienes. The first examples involving homo- or copolymerization of olefins (e.g., norbornene) bearing a ferrocenyl substituent were performed using Mo-based initiators by Schrock and coworkers [3] (Scheme 12.1a). Depending on the reaction conditions and monomer(s) ratio, redox-active polymers or block copolymers were obtained with narrow polydyspersities. Solution measurements showed that the redox centers in homo- and copolymers were electrochemically independent. Advances in Organometallic Chemistry and Catalysis: The Silver/Gold Jubilee International Conference on Organometallic Chemistry Celebratory Book, First Edition. Edited by Armando J. L. Pombeiro. © 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
158 SYNTHESIS OF METALLOCENES VIA METATHESIS IN METAL COORDINATION SPHERES ADMET CM
cat. cat. RCM
cat. ROMP
+2 (a)
cat. ( )
n ( )
n Z M Z ( )
n ( )
n M ( ) n M
( )
( )
n M (b) CM cat.
Z + CM cat. ROMP
cat. ( )
n M ( ) n M Z ( ) n ( )
n M M ( ) n M
( )
M
Schematic representation of reported metathesis reactions for metallocene derivatives: (a) 1,1 -bis(alkenyl), (b) monoalkenyl. cat., suitable metathesis catalyst. Ru Ph
3 PCy
3 Cl Cl Ru-I Ru-II N N Mes Mes Ru Ph PCy 3 Cl Cl W-I: R ′ = CF 3 W N Me Me O Me O R ′ R ′ R ′ O R ′ R ′ R ′ Mo-I: R = Ph, R ′ = CF 3 Mo-II: R = R ′ = Me Mo-III: R = Me, R ′ = CF 3 Mo R Me Me N i Pr
Pr O
′ Me R ′ O R ′ Me R ′ NO 2 Ru O N N Mes Mes
Cl Cl
Ru-III N N Mes Mes Ru Ph py Cl Cl py Figure 12.2 Structures of catalysts applied in reactions described in this review. In another report, by means of suitably functionalized norbornene monomers and Ru-I catalyst, ferrocene units were incorporated into hybrid gold nanoparticles with shell structures [4]. More recently, by using a similar approach and derivatives of norbornene-exo-2,3-dicarboximide, cobaltocenium- containing copolymers were obtained [5]. Two classes of copolymers were studied: (i) a cobaltocenium-containing block POLYMERS BEARING METALLOCENE MOIETIES BY RING-OPENING METATHESIS POLYMERIZATION 159 X − , Y − = PF 6 − , Cl − , or BPh
4 − (a) + Mo-II
+ (b)
+ Ru-III
Ru-III R 1 = R 2 = COOMe Fe O O R 1 = −(CH
2 ) 3 R = −(CH
2 ) 3 Co + Y − Co + X − O O m COOH
n m N R
1 O O n N R
O O
R 1
2 R 1 R 2
m n N R
O O N R O O N O O R 1
n m n N R O O COOH Scheme 12.1 R Fe R Fe
n W-I
Scheme 12.2 R = H, t Bu.
followed with the second metal-free block and (ii) a cobaltocenium-containing block followed with the second cobaltocenium- containing block with a different counterion (Scheme 12.1b). These copolymers self-assembled into spherical core/shell micelles in solutions. Treatment of these micelles under UV/ozonolysis and pyrolysis conditions gave Co(II) or Co(III) containing nanoparticles. Grubbs and coworkers [6] studied ROMP of strained [4]ferrocenophanes as a plausible route to poly(ferrocenylene- divinylene) and related poly(ferrocenylenebutenylene) (Scheme 12.2, R = H) employing a W-initiator. The obtained polymers (R = H) with n > 10 displayed somewhat limited solubility in common organic solvents. Gel permeation chromatography (GPC) analyses of the CH 2 Cl 2 -soluble fractions showed oligomeric structure of these products with chain lengths of circa 10. Introduction of an aliphatic substituent (Scheme 12.2, R =
Bu) solved the solubility problem. Deep red, stable to the atmosphere polymers soluble in benzene, CH 2 Cl
, and tetrahydrofuran (THF) were obtained with a W-based catalyst. The molecular weight of the product increased qualitatively with the monomer/catalyst ratio, and polymers with M n ≥ 300,000 were obtained and characterized by thermogravimetric analysis, GPC, and UV/vis spectroscopy. The results were consistent with a moderate degree of conjugation in the polymer [7]. Similarly, the highly strained [2]ferrocenophane underwent slow polymerization in benzene at room temperature to yield the poly(ferrocenylenevinylene) as an insoluble (toluene, THF, CH 2 Cl
, dimethylformamide (DMF), dimethylsulfoxide (DMSO)) orange solid (Scheme 12.3) [8]. 160 SYNTHESIS OF METALLOCENES VIA METATHESIS IN METAL COORDINATION SPHERES n Mo-I
Fe n Fe
Fe
Mo-I
Fe n Scheme 12.4 Partially soluble diblock copolymers resulted from copolymerization of the [2]ferrocenophane with norbornene in a benzene solution [8]. ROMP of [3] ferrocenophane was reported as moderately successful (Scheme 12.4) [9]. Polymerization with Ru-I in benzene was not complete even after 7 days at 60 ◦ C. When a Mo-I initiator was used, the monomer was consumed after 3 days at 40 ◦ C. The GPC analysis of the THF-soluble fraction of the product showed low molecular weight (M n = 350). The authors discussed some possible structures of linear and cyclic oligomers. The cross-metathesis of vinylferrocene was apparently studied as a model reaction of ADMET of 1,1 -divinylferrocene (2-1) (see 12.4 section) [10]. Using a Mo-I initiator and 1,1 -divinylferrocene 2-1, oligomers corresponding to the products resulting from the ROMP of [2]ferrocenophane (Scheme 12.3) with an average of n = 4 were obtained (Scheme 12.5). The conjugated oligomers displayed low solubility in toluene. In order to overcome this limitation, ADMET copolymerization of 1,1 -divinylferrocene 2-1 with 1,9-decadiene was studied (Scheme 12.6) at 1 : 16 molar ratio. Random copolymers with M
circa 3000 were obtained with the same monomer ratio as in the feed. ADMET polymerization of 1,1 -di-t-butyl-3,3 -divinylferrocene was also examined in order to increase the solubility. Unfortunately, its homopolymerization failed under the same conditions as for 2-1; copolymerization with 1,9-decadiene gave a random copolymer with M
= 11,000 [10]. 1,3-(Diisopropropenyl)-1 ,2 ,3 ,4 ,5 -pentamethylferrocene (2-2) could not be polymerized under the optimized ADMET conditions with Ru-II-type catalysts (Scheme 12.7a) even under forcing conditions (75 ◦ C, only the starting material was recovered by chromatography). Ferrocene-containing polymers were, however, obtained from another monomer, namely, a 1,1 -divinylphenyl derivative 2-3 (Scheme 12.7b). ADMET copolymerization of the latter compound with a divinylfluorene (R = 2-ethylhexyl) was accomplished with Ru-IV catalyst (3 days, 55 ◦ C) [11]. The resulting copolymer (M n = 25,100, PDI = 1.6) displayed considerably higher solubility than the corresponding homo-poly(fluorene). However, incorporation of the ferrocene unit into the polymer backbone resulted in a significant decrease of the fluorescence intensity compared to the homo-poly(fluorene). Fe
Mo-I
Fe n 2-1 Scheme 12.5 Fe
Mo-I + 16n ( ) 6 Fe n ( )
6 16n 2-1 Scheme 12.6 SYNTHESIS OF METALLOCENES BY RING-CLOSING METATHESIS 161 Ru-IV
(a) (b)
No polymer m + Ru-II or Ru-IV Fe Fe R R Fe R R
n n 2-2 2-3 Scheme 12.7 R = 2-ethylhexyl. 12.3 SYNTHESIS OF METALLOCENES BY RING-CLOSING METATHESIS The discovery and commercialization of Grubbs’ catalysts allowed for routine application of olefin metathesis in organic synthesis. A ferrocenemethyl moiety might serve as a protecting group on a nitrogen atom; two research groups have shown its inertness toward the Ru-catalyzed RCM. Thus, complex organic molecules bearing ferrocenylmethyl protecting groups were successfully transformed via RCM, however, without any significant changes in the Fe coordination spheres [12, 13]. The original idea that RCM of 1,1 -diallylferrocenes could be employed to synthesize [4]ferrocenophanes via RCM was discovered by Richards and coworkers [14] and further explored by Ogasawara and coworkers [15] (Scheme 12.8). Several ansa-ferrocenes and ansa-ruthenocenes (M = Fe or Ru; R = H or Me; R 1 = H or Me) were synthesized via the RCM route in high yields employing the commercial Ru-I catalysts. Significant diastereoselectivity of these reactions was observed when mixtures of meso and rac complexes (X = Me or Ph) were used as substrates. Thus, the meso-diastereoisomer was cyclized to give the meso–ansa product whereas the rac-diastereoisomer did not react in the presence of Ru-I catalyst. The less reactive rac-isomer was recovered by chromatography and reacted with Ru-II to give the rac–ansa complex in high yield. In the following report from the same research group, diphosphaferrocenes were tested as plausible substrates for the Ru-catalyzed RCM (Scheme 12.9) [16]. However, both Ru-I and Ru-II catalysts were not effective with these substrates (the starting material was recovered). The authors supposed that the P-containing substrates coordinated to the Ru-center and deactivated it in accordance with the generally accepted catalytic cycle. Fortunately, the Schrock Mo-I catalyst transformed the phosphaferrocenes into the – CHR=CHR Ru-I X
M R 1 R 1 R 1 R 1 R X R X M
Download 11.05 Mb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling