Cheng Zhi Huang, Jian Ling, Yuan Fang LI 1 Introduction to light scattering


particles by the Maxwell equation. When the particle size is far smaller than the


Download 275.97 Kb.
Pdf ko'rish
bet6/9
Sana09.06.2023
Hajmi275.97 Kb.
#1468411
1   2   3   4   5   6   7   8   9
Bog'liq
huang2018


particles by the Maxwell equation. When the particle size is far smaller than the
wavelength of the incident light, the electron dipole in the Mie equation plays a
leading role and the equation can be simpli
fied to the Rayleigh equation. Although
the Mie theory could solve light scattering of any size, in light concept description,
people still called scattering of molecules or particles (a few nanometers), far
smaller than the wavelength of scattered light, as Rayleigh scattering, while large
particle scattering that was unsuitable for the Rayleigh scattering theory is called
Mie scattering. That is, to say, Mie scattering is suitable for particles whose size are
of the same order or larger than light wave, and so Mie scattering is also called
particle scattering.
Di
fferent from scattering intensity distribution of Rayleigh scattering, Mie scat-
tering has asymmetric scattering light intensity, where the forward light scattering is
larger than the backward light scattering. With the increase of the particle size, the
ratio of the forward light scattering intensity and backward light scattering intensity
gets increased, and the lobe of forward light scattering increases (Figure 1.8). When a
particle is larger than the wavelength, the scattering process has no obvious reliable
relationship on the wavelength.
0
0
100
200
300
400
500
600
700
2
4
Diameter (μm)
Scattering Intensity
6
8
10
Figure 1.7: The intensity of scattered light of di
fferent droplets. The incident wavelength was 633 nm,
and scattering angle (
θ) 4°–12°. Data source: http://www.app17.com/tech/infodetail/157035.html.
16
Cheng Zhi Huang, Jian Ling, Yuan Fang Li
Brought to you by | University of Iowa Libraries
Authenticated
Download Date | 1/19/20 3:36 AM


0.13 μm Theoretical value
0.13 μm Experimental value after normalization
2
3
4
5
6
7
8
9
10
68
69
70
71
72
73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
0.13 μm Theoretical value
0.13 μm Experimental value after normalization
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
Figure
1.8:
The
light
angle
distribution
of
Mie
scattering.
Data
source:
http://www.app17.com/tech/infodetail/157035.html
Introduction to light scattering
17
Brought to you by | University of Iowa Libraries
Authenticated
Download Date | 1/19/20 3:36 AM


1.4.2 Features of Mie scattering
Compared with Rayleigh scattering, Mie scattering has the following features:
(1) The light intensity of Mie scattering is much larger than that of Rayleigh scatter-
ing, while its variation with the incident wavelength is not as obvious as that of
Rayleigh scattering.
(2) With the change of scattering angle, the light intensity of Mie scattering has many
maximum and minimum values. When size parameter increases, the number of
extremum value also increases.
(3) With the increase of scattering particle size, the total energy of Mie scattering
increases rapidly, and then it comes to a constant value in vibrating form.
(4) When scattering particle size is rather small, Mie scattering can be simpli
fied to
Rayleigh scattering. With an increase of the particle parameter, the ratio of
forward light scattering and backward light scattering increases, and forward
light scattering increases. When the particle has a large size, the Mie scattering
result is same as that by geometrical optics, namely there is light re
flection or
di
ffraction. In the moderate range of a size parameter, only Mie scattering could
obtain the correct result. That is, Mie scattering calculation mode could widely
describe scattering features of homogeneous spherical particles of any size.
By using the Mie scattering theory, we could well understand why cloud at noon
appears white or grey. Scattering particles in the cloud such as water drops or crystals
are large enough to the wavelength of sun lights, and so Mie scattering occurs with no
obvious relation between the intensity and wavelength of the incident light. The
scattered light has the color of sunshine, and so cloud in the sky appears white. If
the cloud is too thick, the scattered light is unable to pass through the cloud, and the
cloud appears grey or even black to our eyes.
It should be noted that Mie scattering in essence is not an independent theory,
but solutions of Maxwell equations for a spherical medium. However, as the solution
to Maxwell
’s equation is rather complex, the first perfect solution provided by Mie
became classic, so this solution algorithm was called the Mie theory. Through Mie
theory, people obtained many regular things, for example, rules of scattering related
anisotropy coe
fficient changing with the relative diameter of medium balls, scatter-
ing of complex particles and particle groups.
1.4.3 Lorenz
–Mie–Debye scattering
In the history of light scattering study, Mie was not the
first scientist to formularize
electromagnetic scattering. Before him, a German mathematician Rudolf Friedrich
Alfred Clebsch (1833
–1872) used the potential energy function to solve the scattering
issues of perfectly rigid sphere as a elastic point source, while a Danish mathematician
18
Cheng Zhi Huang, Jian Ling, Yuan Fang Li
Brought to you by | University of Iowa Libraries
Authenticated
Download Date | 1/19/20 3:36 AM


and physicist Ludvig Valentin Lorenz (1829
–1891) independently put forward a similar
theory in 1890, almost 20 years before the Mie theory. Although Lorenz
’s study was
earlier than Mie
’s, his paper was published in Denmark and was less concerned.
Comparatively, the Mie theory was drawn wide attention and was further developed,
and so the phenomenon is called the Mie scattering theory.
In 1908, when Mie put forward a scattering solution to a homogeneous spherical
Download 275.97 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling