Convergence of the empirical two-sample -statistics with -mixing data


Download 380.03 Kb.
bet22/37
Sana16.11.2020
Hajmi380.03 Kb.
#146511
1   ...   18   19   20   21   22   23   24   25   ...   37

Lemma 2.5. Let a and b be two real numbers such that a < b and let f : R → R be a function which can be expressed as a dierence of two non-decreasing functions f1 and f2. Then


sup |f (s)| 6 |f (a)| + |f (b)| + |f2 (b) − f2 (a)| .

(2.65)

s∈[a,b]
Proof. Let s [a, b]. Then by non-decreasingness of f1 and f2,


  • (s) = f1 (s)−f2 (s) 6 f1 (b)−f2 (a) = f (b)+f2 (b)−f2 (a) 6 |f (a)|+|f (b)|+|f2 (b) − f2 (a)| .

Moreover,


f (s) = f1 (s) f2 (s) > f1 (a) f2 (b) = f (a) + f2 (a) f2 (b) > − |f (a)| − |f2 (b) f2 (a)| ,
which allows to conclude.
In the expression supsIk sup06t61 |Rn (s, t)|, the supremum over t is actually a maximum; for the supremum over s, we will apply Lemma 2.5 in the following setting: for a fixed t ∈ [0, 1],


[nt]

n




f1 (s) =

(1 {g (Xi, Xj) 6 s} + P{g (Xi, Xj) 6 s}) ;

(2.66)

i=1

nt




X

j=[X]+1




f2

[nt]n

h1,s (Xi) + h2,s (Xj)

,

(2.67)

(s) = i=1 j=[nt]+1




X X

g

g







where hg1,s (u) = P{g (u, X2) 6 s} and hg2,s (v) = P{g (X1, v) 6 s}. In view of (2.64), we derive that

sup

sup

|

R




(s, t)

| 6

2 max sup

|

R




(a

, t)

|
















R6s6R 06t61




n










16k6Bn 06t61







n




k







2,ak ( j)




2,ak−1 (

j)




+ 3/2

sup

1

k

Bn

[nt]

n

1,ak (







i)







1,ak−1 ( i) +



















n

1

06t61

6 6















































i=1 j=[nt]+1











































max

X

X

h] X










h^ X

h] X




h^ X




























































































































































































































(2.68)
and after having rearranged the second term of the right hand side of (2.68), we end up with the estimate

P

R6s6R 06t61

|

R

n

|










6 P

16k6Bn 06t61 |

R

n




k




|













sup sup







(s, t)




> 4ε













max

sup







(a




, t)

> ε










+ P(√n 16k6Bn i=1 1,ak (

i) − 1,ak−1 ( i)

)



















1
















n






































































max




X

h] X




h^ X




> ε






























































































































































































P







1 k Bn

n

2,ak ( j)







2,ak−1 ( j)





































1



























































































6 6




j=1

























































n


















































































X

h] X










h^ X




























+
















max













> ε . (2.69)













































































































































14 HEROLD DEHLING, DAVIDE GIRAUDO AND OLIMJON SHARIPOV


Let us estimate the first term of the right hand side of (2.69). The use of (2.62) and a union bound yields




P

16k6Bn 06t61

|




n

k







|







6




n exp
























max

sup




R







(a




, t)




> ε

CB







n

.




(2.70)

Now, using the assumptions (A.1) and assumption (A.2), we derive that







n

q,ak ( i)

q,ak−1 (




i)

6




16k6Bn




q ( k

k−1) 6

q n

∈{1 2}

16k6Bn i=1










X

h] X

h^ X



















max




























max










n




M




a

a







M nδ , q

,




hence the condition



































































(2.71)























































































lim


































(2.72)




























n = 0











































n→+∞











































guarantees the convergence in probability of the last two terms of (2.69).







We thus need










































log n































lim
















lim




= 0,
















(2.73)













n = 0;






































































n→+∞




























n→+∞n






















which can be done by choosing δn = n−3/4. This ends the proof of Theorem 1.1.
2.2.
Download 380.03 Kb.

Do'stlaringiz bilan baham:
1   ...   18   19   20   21   22   23   24   25   ...   37




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling