Convergence of the empirical two-sample -statistics with -mixing data


Download 380.03 Kb.
bet24/37
Sana16.11.2020
Hajmi380.03 Kb.
#146511
1   ...   20   21   22   23   24   25   26   27   ...   37

Proposition 2.6. For all d > 1 and all s1 < · · · < sd and 0 6 t1 < · · · < td 6 1, the vector (Wn0 (s`, tk))dk,`=1 converges in distribution to (W 0 (s`, tk))dk,`=1, where Wn0 is defined by (2.75) and W is like in Theorem 1.3.
Here again, we will prove the convergence of linear combinations, that is, for all (ak,`)dk,`=1, the convergence in distribution


d

d




X

X




ak,`Wn0 (s`, tk)

ak,`W 0 (s`, tk)

(2.77)

k,`=1

k,`=1









































































15

holds. To this aim, we will express




d




ak,`W 0 (s`, tk) as a linear combination of a sum of




k,`=1


































n



















functions of Xi. Using the definitionPof In,u given by (2.8) for 1 6 u 6 d + 1, we derive that

























d
















1




n


































X
















X


































ak,`Wn0 (s`, tk) =















An,i,

(2.78)

























n




i=1

























k,`=1








































where, for iIn,u,


























































1




d





























































X














































An,i =







ak,` (n [ntk]) h1,s` (Xi) 1 {u 6 k}



















n








































k,`=1














































1







1




d




























1




d
















X




























X

ak,`[ntk]h2,s` (Xi) 1 {u > k}








































d

















































n

n2

(ni)

ak,`[ntk] (n [ntk]) h1,s` (Xi) + n

k,`=1

























k,`=1



































































1







1

X

ak,`[ntk] (n [ntk]) h2,s` (Xi) .






















































































































n

n2

(i − 1)

(2.79)











































k,`=1



















Download 380.03 Kb.

Do'stlaringiz bilan baham:
1   ...   20   21   22   23   24   25   26   27   ...   37




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling