Convergence of the empirical two-sample -statistics with -mixing data


Download 380.03 Kb.
bet26/37
Sana16.11.2020
Hajmi380.03 Kb.
#146511
1   ...   22   23   24   25   26   27   28   29   ...   37

Lemma 2.7. Let (cj)jZ be an absolutely summable sequence of real numbers such that cj = cj for all j and let 0 6 a < b 6 1. Then


lim

1

bbnc

i

c




=

b2 a2

c ;

(2.87)













n→+∞ n

Xbc

n

ji

2

X







j










i,j= an +1










j∈Z






bbnc



lim 1 X


n→+∞ n
i,j=banc+1


i j c

= b3 a3

c .

(2.88)










ji







X




n




n




3

j






















j∈Z





Proof. For the first convergence, we split the sum according to the values of j i (between
Nn 1 and Nn + 1 where Nn = bbnc − banc):

bbnc i

Nn−1

bbnc




i

bbnc










Xbc




cji =

X

bXc







bXc

1

{ji = k} .

(2.89)







ck
















n




n




i,j= an +1

k=−Nn+1

i= an +1

j= an +1







Pbbnc

The sum j=banc+1 1 {ji = k} is 1 if banc + 1 6 i + k 6 bbnc and zero otherwise; for k > 0, this constraint means banc+ 1 6 i 6 bbnc−k and for k < 0, this means banc+ 1−k 6 i 6 bbnc hence



1

bbnc




i

X

1




bbnc−k i




Xbc




cji =




1 {0 6 k 6 Nn − 1} ck

bXc







n i,j= an

+1

n

k∈Z

n

i= an

+1 n




























1

X

























b

bbnc






i






















+




1 {−Nn + 1 6 k

6 −1} ck




Xc










. (2.90)






















n

k∈Z

i= an +1




k

n

For a fixed k, the convergences






































































1

1

{0

6

k

6

N

n



1}

c

k

bbnc−k i



c

k

b2 a2













(2.91)




n










n




2



















X
i=banc+1



  • X



  • k∈Z










































17

N

k




c







bbnc







i

c b2 a2




1 {− n + 1 6




6 −1}







=b

Xc


















(2.92)







k




n

k 2













i




an +1




k










Download 380.03 Kb.

Do'stlaringiz bilan baham:
1   ...   22   23   24   25   26   27   28   29   ...   37




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling