Convergence of the empirical two-sample -statistics with -mixing data
Download 380.03 Kb.
|
Lemma 2.7. Let (cj)j∈Z be an absolutely summable sequence of real numbers such that cj = c−j for all j and let 0 6 a < b 6 1. Then
bbnc lim 1 X n→+∞ n i,j=banc+1
Proof. For the first convergence, we split the sum according to the values of j − i (between Nn − 1 and −Nn + 1 where Nn = bbnc − banc):
Pbbnc The sum j=banc+1 1 {j − i = k} is 1 if banc + 1 6 i + k 6 bbnc and zero otherwise; for k > 0, this constraint means banc+ 1 6 i 6 bbnc−k and for k < 0, this means banc+ 1−k 6 i 6 bbnc hence
X i=banc+1 X k∈Z
Download 380.03 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling