Economic Growth Second Edition


Appendix 2C: Behavior of the Saving Rate


Download 0.79 Mb.
Pdf ko'rish
bet104/108
Sana06.04.2023
Hajmi0.79 Mb.
#1333948
1   ...   100   101   102   103   104   105   106   107   108
Bog'liq
BarroSalaIMartin2004Chap1-2

2.10
Appendix 2C: Behavior of the Saving Rate
This section provides an algebraic treatment of the transitional behavior of the saving rate.
We deal here with the transition in which ˆand ˆare rising over time, and we assume a
Cobb–Douglas production function, so that f
(ˆk) Aˆk
α
.
The gross saving rate, s, equals 1
− ˆc/f (ˆk). In the steady state, ˙ˆfrom equation (2.24)
and ˙ˆc
/ˆfrom equation (2.25) are each equal to 0. If we use these conditions, together with
f
(ˆk)/ˆf

(ˆk)/α, which holds in the Cobb–Douglas case, we find that the steady-state
saving rate is
s

α · (x δ)/(ρ θx δ)
(2.93)
The transversality condition in equation (2.31) implies
ρ+θx > x +and, therefore, s

< α.


136
Chapter 2
Since s
= 1− ˆc/f (ˆk)moves in the direction opposite to the consumption ratio, ˆc/f (ˆk).
Define z
≡ ˆc/f (ˆk) and differentiate the ratio to get
γ
z
≡ ˙z/z = ˙ˆc/ˆ
f

(ˆk) · ˙ˆk
f
(ˆk)
= ˙ˆc/ˆ− α · (˙ˆk/ˆk)
(2.94)
where the last term on the right follows in the Cobb–Douglas case. Substitution from
equations (2.24) and (2.25) into equation (2.94) leads to
γ
z
f

(ˆk) · [z(t) − (θ − 1)/θ] + (δ ρ θx) · (s

− 1/θ)
(2.95)
where we used the condition f
(ˆk)/ˆf

(ˆk)/α, which holds in the Cobb–Douglas case.
The behavior of depends on whether s

is greater than, equal to, or less than 1
. Suppose
first that s

= 1. Then z(t) (θ − 1)/θ is consistent with γ
z
= 0 in equation (2.95). In
contrast, z
(t) > (θ −1)/θ for some would imply γ
z
0 for all t, a result that is inconsistent
with approaching its steady-state value. Similarly, z
(t) < (θ−1)/θ can be ruled out because
it implies
γ
z
0 for all t. Therefore, if s

= 1is constant at the value (θ − 1)/θ, and,
hence, the saving rate, s, equals the constant 1
. By analogous reasoning, we find that
s

1/θ implies z(t) < (θ − 1)/θ for all t, whereas s

1/θ implies z(t) > (θ − 1)/θ for
all t
.
Differentiation of equation (2.95) with respect to time implies
˙γ
z
f

(ˆk) · (˙ˆk) · [z(t) − (θ − 1)/θ] + f

(ˆk) · γ
z
· z(t)
(2.96)
Suppose now that s

1, so that z(t) < (θ − 1)/θ holds for all t. Then γ
z
0 for some t
would imply
˙γ
z
0 in equation (2.96) (because f

(ˆk) < 0, f

(ˆk) > 0, and ˙ˆk > 0). Therefore,
γ
z
0 would apply for all t, a result that is inconsistent with the economy’s approaching a
steady state. It follows if s

1/θ that γ
z
0, and, hence, ˙s > 0. By an analogous argument,
γ
z
0 and ˙s < 0 must hold if s

1.
The results can be summarized as follows:
s

= 1/θ implies s(t) = 1, a constant
s

1/θ implies s(t) > 1/θ and ˙s(t) > 0
s

1/θ implies s(t) < 1/θ and ˙s(t) < 0
These results are consistent with the graphical presentation in figure 2.3.
If we use the formula for s

from equation (2.93), we find that s

≥ 1/θ requires θ 
(ρ θx δ)/[α · (x δ)1. Therefore, if θ ≤ 1, the parameters must be in
the range in which
˙s < 0 applies throughout. In other words, if θ ≤ 1, the intertemporal-
substitution effect is strong enough to ensure that the saving rate falls during the transition.


Growth Models with Consumer Optimization
137
However, for our preferred value of
α in the neighborhood of 0.75, this inequality requires
θ ≤ 1.33 and is unlikely to hold.
We can analyze the behavior of the consumption/capital ratio, ˆc
/ˆk, in a similar way. The
results are as follows:
θ α implies ˆc/ˆ(δ ρ)/θ − (δ n), a constant
θ < α implies ˆc/ˆk < (δ ρ)/θ − (δ n) and ˆc/ˆrising over time
θ > α implies ˆc/ˆk > (δ ρ)/θ − (δ n) and ˆc/ˆfalling over time
2.11
Appendix 2D: Proof That
γ
ˆk
Declines Monotonically
If the Economy Starts from ˆk
(0) < ˆk

We need first to prove the following: ˆc
(0declines if r(v) increases over some interval for
any
≥ 0.
38
Equations (2.15) and (2.16) imply
ˆc
(0=
ˆk
(0+

0
ˆ
w(t)e
−[¯r(t)nx]t
dt

0
e
r
(t)·(1−θ)/θρ/θ+n]t
dt
(2.97)
where ¯r
(t) is the average interest rate between times 0 and t, as defined in equation (2.13).
Higher values of r
(v) for any 0 ≤ ≤ raise ¯r(t) and thereby reduce the numerator in
equation (2.97). Higher values of r
(v) raise the denominator if θ ≤ 1; therefore, the result
follows at once if
θ ≤ 1. Assume now that θ > 1, so that the denominator decreases with an
increase in r
(v). We know that r(v)·(1−θ)/θ ρ/θ +n < 0 if θ > 1 because r(v) exceeds
ρ θx, the steady-state interest rate, which exceeds +from the transversality condition.
Therefore, the denominator in equation (2.97) becomes proportionately more sensitive to
r
(v) (in the negative direction) the larger the value of θ. Accordingly, if we prove the result
for
θ → ∞, the result holds for all θ > 0. Using θ → ∞, equation (2.97) simplifies to
ˆc
(0=
ˆk
(0+

0
ˆ
w(t)e
−[¯r(t)xn]t
dt

0
e
−[¯r(t)n]t
dt
(2.98)
Equation (2.98) can be rewritten as
ˆc
(0=

0
ψ(t)e
−[¯r(t)nx]t
dt

0
φ(t)e
−[¯r(t)nx]t
dt
(2.99)
38. We are grateful to Olivier Blanchard for his help with this part of the proof.


138
Chapter 2
where
ψ(t) = ˆk(0· [r(t) − − x] + ˆw(t) and φ(t) e
xt
. The result ˙
φ < 0 follows
immediately, and ˙
ψ > 0 can be shown using the conditions r(t) f

k
(t)] − δ, ˆw(t) =
k
(t)]−ˆk(t)· f

k
(t)], ˆk(t) > ˆk(0), and ˙ˆk > 0. Therefore, an increase in r(v) for 0 ≤ ≤ t,
which raises ¯r
(t), has a proportionately larger negative effect on the numerator of equation
(2.99) than on the denominator. It follows that the net effect of an increase in r
(v) on ˆc(0)
is negative, the result that we need.
We can use this result to get a lower bound for ˆc
(0). Since r(0) > ¯r(t), if we substitute
r
(0for ¯r(t) and ˆw(0for ˆw(t) in equation (2.97), then ˆc(0must go down. Therefore,
39
ˆc
(0)/ˆk(0) > [r(0· (1 − θ)/θ ρ/θ − n] ·

1
+
ˆ
w(0)
ˆk
· [r(0− − x]

(2.100)
We shall use this inequality later.
The growth rate of ˆis given from equation (2.24) as
γ
ˆk
f (ˆk)/ˆ− ˆc/ˆ− (x δ)
(2.101)
where we now omit the time subscripts. Differentiation of equation (2.101) with respect to
time yields
˙γ
ˆk
= −ˆw/ˆk) · γ
ˆk
− d(ˆc/ˆk)/dt
where we used the condition ˆ
f (ˆk) − ˆ· f

(ˆk). We want to show that ˙γ
ˆk
0 holds in
the transition during which ˆand ˆare rising. The formulas for ˙ˆc
/ˆin equation (2.25) and
˙ˆin equation (2.24) can be used to get
˙γ
ˆk
= −ˆw/ˆk) · γ
ˆk
(ˆc/ˆk) · [ ˆw/ˆ+ [ f

(ˆk) − δ] · (θ − 1)/θ ρ/θ − − ˆc/ˆk]
(2.102)
Hence, if ˆc
/ˆ≥ ˆw/ˆ+ [ f

(ˆk) − δ] · (θ − 1)/θ ρ/θ − n, then ˙γ
ˆk
0 follows from γ
ˆk
0,
Q.E.D. Accordingly, we now assume
ˆc
/ˆk < ˆw/ˆ+ [ f

(ˆk) − δ] · (θ − 1)/θ ρ/θ − n
(2.103)
If we replace ˆc
/ˆto the left of the brackets in equation (2.102) by the right-hand side of
the inequality in equation (2.103), use the formula for
γ
ˆk
from equation (2.101), and replace
f
(ˆk)/ˆby ˆw/ˆf

(ˆk), then we eventually get
˙γ
ˆk
ˆw/ˆk) · [ f

(ˆk) − δ − ρ − θx]/θ + [ρ/θ − + [ f

(ˆk) − δ] · (θ − 1)/θ]
2
+ [ρ/θ − + [ f

(ˆk) − δ] · (θ − 1)/θ] · ˆ− ˆc)/ˆk
(2.104)
39. The result follows from integration of the right-hand side of equation (2.97) if [r
(0)·(1−θ)/θ +ρ/θ n0.
If this expression is nonpositive, the inequality in equation (2.100) holds trivially.


Growth Models with Consumer Optimization
139
If
ρ/θ − + [ f

(ˆk) − δ] · (θ − 1)/θ ≤ 0, we can use the inequality in equation (2.103) to
show
˙γ
ˆk
0, Q.E.D. Therefore, we now assume
ρ/θ − + [ f

(ˆk) − δ] · (θ − 1)/θ > 0
(2.105)
Given the inequality in equation (2.105), we can use the lower bound for ˆc
/ˆfrom
equation (2.100) in equation (2.104) to get, after some manipulation,
˙γ
ˆk

ˆw/ˆk) · [ f

(ˆk) − δ − ρ − θx]
2
f

(ˆk) − δ − − x] · θ
2
0
(2.106)
where we used the condition r
f

(ˆk) − δ. The expressions in parentheses in equa-
tion (2.106) are each positive because f

(ˆk)δ exceeds ρ θx, the steady-state interest rate,
which exceeds n
from the transversality condition. Therefore, ˙γ
ˆk
0 follows, Q.E.D.

Download 0.79 Mb.

Do'stlaringiz bilan baham:
1   ...   100   101   102   103   104   105   106   107   108




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling