Extraction of proteins from the microalga Scenedesmus obliquus br003 followed by lipid extraction of the wet deproteinized biomass using hexane and ethyl acetate
Download 1.87 Mb. Pdf ko'rish
|
1-s2.0-S0960852420304612-main
Bioresource Technology 307 (2020) 123190
8 sequencing of the astaxanthin-producing green microalga, Haematococcus pluvialis. Genome Biol. Evol. 11, 166 –173. https://doi.org/10.1093/gbe/evy263 . Mata, T.M., Martins, A.A., Caetano, N.S., 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14, 217 –232. https://doi. org/10.1016/j.rser.2009.07.020 . Molino, A., Iovine, A., Casella, P., Mehariya, S., Chianese, S., Cerbone, A., Rimauro, J., Musmarra, D., 2018. Microalgae characterization for consolidated and new applica- tion in human food, animal feed and nutraceuticals. Int. J. Environ. Res. Public Health 15, 2436. https://doi.org/10.3390/ijerph15112436 . Montone, C.M., Capriotti, A.L., Cavaliere, C., La Barbera, G., Piovesana, S., Zenezini Chiozzi, R., Laganà, A., 2018. Peptidomic strategy for puri fication and identification of potential ACE-inhibitory and antioxidant peptides in Tetradesmus obliquus micro- algae. Anal. Bioanal. Chem. 410, 3573 –3586. https://doi.org/10.1007/s00216-018- 0925-x . Nakhost, Z., Karel, M., Krukonis, V.J., 1987. Non-conventional approaches to food pro- cessing in CELSS. I — algal proteins; characterization and process optimization. Adv. Sp. Res. 7, 29 –38. https://doi.org/10.1016/0273-1177(87)90029-9 . Ramluckan, K., Moodley, K.G., Bux, F., 2014. An evaluation of the e fficacy of using se- lected solvents for the extraction of lipids from algal biomass by the Soxhlet ex- traction method. Fuel 116, 103 –108. https://doi.org/10.1016/j.fuel.2013.07.118 . Rocha, D.N., Martins, M.A., Soares, J., Vaz, M.G.M.V., de Oliveira Leite, M., Covell, L., Mendes, L.B.B., 2019. Combination of trace elements and salt stress in di fferent cultivation modes improves the lipid productivity of Scenedesmus spp. Bioresour. Technol. 289, 121644. https://doi.org/10.1016/j.biortech.2019.121644 . Rocha, R.P., Machado, M., Vaz, M.G.M.V., Vinson, C.C., Leite, M., Richard, R., Mendes, L.B.B., Araujo, W.L., Caldana, C., Martins, M.A., Williams, T.C.R., Nunes-Nesi, A., 2017. Exploring the metabolic and physiological diversity of native microalgal strains (Chlorophyta) isolated from tropical freshwater reservoirs. Algal Res. 28, 139 –150. https://doi.org/10.1016/j.algal.2017.10.021 . Sa fi, C., Charton, M., Pignolet, O., Silvestre, F., Vaca-Garcia, C., Pontalier, P.-Y., 2013. In fluence of microalgae cell wall characteristics on protein extractability and de- termination of nitrogen-to-protein conversion factors. J. Appl. Phycol. 25, 523 –529. https://doi.org/10.1007/s10811-012-9886-1 . Salimon, J., Abdullah, B.M., Salih, N., 2011. Hydrolysis optimization and characterization study of preparing fatty acids from Jatropha curcas seed oil. Chem. Cent. J. 5, 67. https://doi.org/10.1186/1752-153X-5-67 . Sánchez, J.F., Fernández, J.M., Acién, F.G., Rueda, A., Pérez-Parra, J., Molina, E., 2008. In fluence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem. 43, 398 –405. https://doi.org/10. 1016/j.procbio.2008.01.004 . Sarayloo, E., Simsek, S., Unlu, Y.S., Cevahir, G., Erkey, C., Kavakli, I.H., 2018. Enhancement of the lipid productivity and fatty acid methyl ester pro file of Chlorella vulgaris by two rounds of mutagenesis. Bioresour. Technol. 250, 764 –769. https:// doi.org/10.1016/j.biortech.2017.11.105 . Sari, Y.W., Bruins, M.E., Sanders, J.P.M., 2013. Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals. Ind. Crops Prod. 43, 78 –83. https://doi. org/10.1016/j.indcrop.2012.07.014 . Sari, Y.W., Sya fitri, U., Sanders, J.P.M., Bruins, M.E., 2015. How biomass composition determines protein extractability. Ind. Crops Prod. 70, 125 –133. https://doi.org/10. 1016/j.indcrop.2015.03.020 . Shebanova, A., Ismagulova, T., Solovchenko, A., Baulina, O., Lobakova, E., Ivanova, A., Moiseenko, A., Shaitan, K., Polshakov, V., Nedbal, L., Gorelova, O., 2017. Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. Protoplasma 254 (3), 1323 –1340. https://doi.org/10.1007/ s00709-016-1024-5 . Sierra, L.S., Dixon, C.K., Wilken, L.R., 2017. Enzymatic cell disruption of the microalgae Chlamydomonas reinhardtii for lipid and protein extraction. Algal Res. 25, 149 –159. https://doi.org/10.1016/j.algal.2017.04.004 . Soares, L.S., Faria, J.T., Amorim, M.L., Araújo, J.M., Minim, L.A., Coimbra, J.S.R., Teixeira, A.V.N.C., Oliveira, E.B., 2017. Rheological and physicochemical studies on emulsions formulated with chitosan previously dispersed in aqueous solutions of lactic acid. Food Biophys. 12, 109 –118. https://doi.org/10.1007/s11483-017- 9469-4 . Soares, J., Loterio, R.K., Rosa, R.M., Santos, M.O., Nascimento, A.G., Santos, N.T., Williams, T.C.R., Nunes-Nesi, A., Martins, M.A, 2018. Scenedesmus sp. cultivation using commercial-grade ammonium sources. Ann. Microbiol. 68, 35 –45. https://doi. org/10.1007/s13213-017-1315-x . Silva, M.E.T., Correa, K.P., Martins, M.A., Matta, S.L.P., Martino, H.S.D., Coimbra, J.S.R., 2020. Food safety, hypolipidemic and hypoglycemic activities, and in vivo protein quality of microalga Scenedesmus obliquus in Wistar rats. J. Funct. Foods 65, 103711. https://doi.org/10.1016/j.j ff.2019.103711 . Stack, J., Gouic, A.V. Le, Tobin, P.R., Guihéneuf, F., Stengel, D.B., FitzGerald, R.J., 2018. Protein extraction and bioactive hydrolysate generation from two microalgae, Porphyridium purpureum and Phaeodactylum tricornutum. J. Food Bioact. 1, 153 –165. https://doi.org/10.31665/JFB.2018.1134 . Sun, J., Xiong, X., Wang, M., Du, H., Li, J., Zhou, D., Zuo, J., 2019. Microalgae biodiesel production in China: a preliminary economic analysis. Renew. Sustain. Energy Rev. 104, 296 –306. https://doi.org/10.1016/j.rser.2019.01.021 . Teuling, E., Schrama, J.W., Gruppen, H., Wierenga, P.A., 2019. Characterizing emulsion properties of microalgal and cyanobacterial protein isolates. Algal Res. 39, 101471. https://doi.org/10.1016/j.algal.2019.101471 . Teuling, E., Wierenga, P.A., Schrama, J.W., Gruppen, H., 2017. Comparison of protein extracts from various unicellular green sources. J. Agric. Food Chem. 65, 7989 –8002. https://doi.org/10.1021/acs.jafc.7b01788 . Ursu, A.-V., Marcati, A., Sayd, T., Sante-Lhoutellier, V., Djelveh, G., Michaud, P., 2014. Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresour. Technol. 157, 134 –139. https://doi.org/10.1016/j. biortech.2014.01.071 . Wu, T., Li, L., Jiang, X., Yang, Y., Song, Y., Chen, L., Xu, X., Shen, Y., Gu, Y., 2019. Sequencing and comparative analysis of three Chlorella genomes provide insights into strain-speci fic adaptation to wastewater. Sci. Rep. 9, 9514. https://doi.org/10.1038/ s41598-019-45511-6 . M.L. Amorim, et al. Bioresource Technology 307 (2020) 123190 9 Download 1.87 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling