Funksiya xatoligi Xatolar manbai


Download 61.64 Kb.
bet1/2
Sana07.05.2023
Hajmi61.64 Kb.
#1438168
  1   2
Bog'liq
Funksiya xatoligi


Funksiya xatoligi
1.Xatolar manbai
Ko`pincha matematik masalalarni sonli echishda biz doimo aniq echimga ega bula olmasdan, balki echimni u yoki bu darajadagi aniqlikda topamiz. Demak, aniq echim bilan taqribiy echim orasidagi xatolik qanday kilib kelib koladi degan savol tugilishi tabiiydir. Bu savolga javob berish uchun xatoliklarning hosil bo`lish sabablarini o`rganish lozim. 1. Matematikada tabiat xodisalarining miqdoriy nisbati u yoki bu funktsiyalarni birbirlari bilan boglaydigan tenglamalar yordamida tasvirlanadi va bu funktsiyalarning bir qismi ma`lum bo`lib (dastlabki ma`lumotlar), boshqalarni topishga to`g’ri keladi. Tabiiyki, topilishi kerak bo`lgan miqdorlar (masalaning echimi) dastlabki ma`lumotlarning funktsiyasi bo`ladi. Kerakli echimni ajratib olish uchun dastlabki ma`lumotlarga konkret qiymatlar berish kerak. Bu dastlabki ma`lumotlar, odatda, tajribadan olinadi (masalan, yorug’lik tezligi, Plank doimiysi, Avogadro soni va x.k.) 36 yoki boshqa biror masalani echishdan hosil bo`ladi. Har ikkala xolda ham biz dastlabki ma`lumotlarning aniq qiymatiga emas, balki uning taqribiy qiymatiga ega bo`lamiz. Shuning uchun agar dastlabki ma`lumotlarning har bir qiymati uchun tenglamani aniq, echganimizda ham, baribir (dastlabki ma`lumotlardagi qiymatlar taqribiy bo`lganligi uchun) taqribiy natijaga ega bo`lamiz va natijaning aniqligi dastlabki ma`lumotlarning aniqligiga bog’liq bo`ladi. Aniq, echim bilan taqribiy echim orasidagi farq xato deyiladi. Dastlabki ma`lumotlarning noaniqligi natijasida hosil bo`lgan xato yo`qotilmas xato deyiladi. Bu xato masalani echayotgan matematikga bog’liq. bo`lmasdan, unga berilgan ma`lumotlarning aniqligiga bog’liqdir. Lekin matematik dastlabki ma`lumotlar xatosining kattaligini bilishi va shunga qarab natijaning yo`qotilmas xatosini baxolashi kerak. Agar dastlabki ma`lumotlarning aniqligi katta bo`lmasa, aniqligi juda katta bo`lgan metodni qo`llash urinsizdir. CHunki aniqligi katta bo`lgan metod ko`p mexnatni (hisoblashni) talab kiladi, lekin natijaning xatosi bari bir yo`qotilmas xatodan kam bo`lmaydi. 2. Ba`zi matematik ifodalar tabiat xodisasining ideallashtirilgan modelini tasvirlaydi. Shuning uchun tabiat xodisalarining aniq matematik ifodasini (formulasini, tenglamasini) berib bo`lmaydi, buning natijasida xato kelib chikadi. Yoki biror masala aniq matematik formada yozilgan bo`lsa va uni shu ko`rinishda echish mumkin bo`lmasa, bunday xolda bu masala unga yaqinrok va echish mumkin bo`lgan masalaga almashtirilishi kerak. Buning natijasida kelib chiqadigan xato metod xatosi deyiladi
3. Biz doimo , , va shunga o`xshash irratsional sonlarning taqribiy qiymatlarini olamiz, bundan tashqari, hisoblash jarayonida oraliq natijalarda ko`p xonali sonlar hosil bo`ladi, bularni yaxlitlab olishga to`g’ri keladi. Ya`ni masalalarni echishda hisoblashni aniq olib bormaganligimiz natijasida ham xatoga yo`l kuyamiz, bu xato hisoblash xatosi deyiladi.
Shunday kilib, tulik, xato yuqorida aytilgan yo`qotilmas xato, metod xatosi va hisoblash xatolarining yig’indisidan iboratdir. Ravshanki, biror konkret masalani echayotganda yuqorida aytilgan xatolarning ayrimlari katnashmasligi yoki uning ta`siri deyarli bo`lmasligi mumkin. Lekin, umuman olganda, xato tulik. analiz kilinishi uchun bu xatolarning xammasi hisobga olinishi kerak.
Masalani kulda yoki hisoblash mashinasida echayotganda biz barcha haqiqiy sonlar bilan ish kurmasdan, sonlarning ma`lum diskret to`plami bilan ish ko`ramizki, u yoki bu sanok sistemasida ma`lum miqdordagi xonalar bilan olingan sonlar shu to`plamda yotadi. Bu to`plam

ko`rinishdagi sonlardan iborat bo`lib, by erda natural son q - sanok sistemasining asosidir - butun sonlar bo`lib, shartni kanoatlantiradi t bu to`plamdagi sonlar xonasining miqdori, butun p son esa shartni qanoatlantiradi.Qolda hisoblayotganda ,asosan o’nlik sanok sistemasi (q=10) bilan ish quriladi.Ko’p EHM larda esa ikkilik sanoq sistemasi (q=2)va ayirmalari uchun uchlik sanok, sistemasi (q=3) ishlatiladi.EHM larning ko’pchiligi shunday tuzilganki ,ularda q=2 m=35, bo’ladi .
Odatda arfimetik amallarni bajarayotganada ko’p xonali
sonlar hosil boladi .
(masalan, ko`paytirishda xonalarning soni ikkilanadi, bo`lishda esa xonalarning soni nixoyatda kattalashib ketishi ham mumkin). Natijada hosil bo`lgan son qaralayotgan to`plamdan chikib ketmasligi uchun t - xonasigacha yaxlitlanadi, ya`ni shu to`plamdagi boshqa son bilan almashtiriladi, tabiiyki yaxlitlanadigan son unga eng yaqin son bilan almashtirilishi, ya`ni yaxlitlash xatosi eng kichik bo`lishi kerak. Agar biz juft rakam koidasini qo`llab 5,780475 sonini ketma-ket yaxlitlasak, quyidagi 5,78048; 5,7805; 5,780; 5,78; 5,8; 6 sonlar kelib chikadi. Ko`pincha biror natijani olish uchun berilgan metodda ko`rsatilgan bir kator amallarni bajarishga to`g’ri keladi. Agar natijani katta aniqlik bilan topish talab kilinsa, bu kator yanada o`zayib ketadi.

Download 61.64 Kb.

Do'stlaringiz bilan baham:
  1   2




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling