Идеальные и вязкие жидкости. Гидростатика несжимаемой жидкости. Стационарное течение идеальной жидкости. Уравнение
В любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема жидкости
Download 198.91 Kb.
|
- Bu sahifa navigatsiya:
- Закон Паскаля
В любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема жидкости.
Закон Паскаля: Давление в любом месте покоящейся жидкости одинаково по всем направлениям, причем давление одинаково передается по всему объему, занятому покоящейся жидкостью. Иногда формулируют закон Паскаля следующим образом: давление, создаваемое поверхностными силами, передается без изменения в каждую точку жидкости. В этой формулировке закон Паскаля остается верным и для общего случая, т. е. для случая, когда мы учитываем и силу тяжести. Если сила тяжести создает внутри покоящейся жидкости определенное давление (вообще говоря, различное в различных точках), то приложенные поверхностные силы увеличивают давление в каждой точке жидкости на одну и ту же величину.
Закон Паскаля позволяет объяснить действие распространенного в технике устройства — гидравлического пресса. Гидравлический пресс состоит из двух цилиндров разных диаметров, снабженных Рис. 12.2. Схема гидравлического пресса Перемещения поршней обратно пропорциональны их площадям, а значит, и силам, на них действующим поршнями и соединенных трубкой (рис. 12.2). Пространство под поршнями и трубка заполняются жидкостью. Обозначим площадь малого поршня через S1, а большого поршня — через S2. Пусть к малому поршню приложена сила F1; найдем, какую силу F2 необходимо приложить ко второму поршню, чтобы сохранить равновесие, т. е. для того, чтобы жидкость не была вытеснена из первого цилиндра во второй или обратно через соединяющую их трубку. Будем пренебрегать силой тяжести, действующей на жидкость; тогда давление во всех точках жидкости должно быть одним и тем же. Но давление под первым поршнем равно F1/S1 а под вторым — F2/S2; следовательно, F1/S1=F2/S2, откуда находим т. е. сила F2 во столько раз больше силы F1, во сколько раз площадь второго поршня больше площади первого. Таким образом, при помощи гидравлического пресса можно малой силой уравновесить большую силу. Предположим теперь, что первый поршень переместился (например, опустился) на расстояние h1 (рис. 12.3); тогда часть жидкости поступает из первого цилиндра во второй и поднимет второй поршень на расстояние h2. Поскольку сжимаемость жидкостей незначительна, объем жидкости, вытесненный из первого цилиндра, можно считать равным объему, поступившему во второй, т. е. h1S1=h2S2. Сравнивая эту формулу с формулой, полученной нами для силы F2, видим, что путь, проходимый большим поршнем, во столько раз меньше пути, проходимого меньшим поршнем, во сколько раз сила, действующая на большой поршень, больше силы, действующей на меньший.
Найдем выталкивающую силу, действующую на твердое тело, погруженное в жидкость. Выталкивающая сила, действующая на тело (рис. 12.4а), есть равнодействующая сил давления жидкости на его поверхность. Представим себе, что тело удалено и его место занято той же жидкостью (рис. 12.4б). а) Тело находится в жидкости. б) Тело заменено жидкостью Давление на поверхность такого мысленно выделенного объема будет таким же, каким было давление на поверхность самого тела. Значит, и равнодействующая сила давления на тело (выталкивающая сила) равна равнодействующей сил давления на выделенный объем жидкости. Но выделенный объем жидкости находится в равновесии. Силы, действующие на него,— это сила тяжести Р и выталкивающая сила F (рис. 12.5а). Значит, выталкивающая сила равна по модулю силе тяжести, действующей на выделенный объем жидкости, и направлена вверх. Точкой приложения этой силы должен быть центр тяжести выделенного объема. В противном случае равновесие нарушилось бы, так как сила Равнодействующая сил давления на поверхность погруженного тела равна силе тяжести, действующей на жидкость, объем которой равен объему тела, б) Если бы точка приложения равнодействующей силы не совпадала с центром тяжести вытесненного объема жидкости, то получилась бы пара сил и равновесие этого объема было бы невозможным тяжести и выталкивающая сила образовали бы пару сил (рис. 12.5. б). Но, как уже сказано, выталкивающая сила для выделенного объема совпадает с выталкивающей силой тела. Мы приходим, таким образом, к закону Архимеда: Download 198.91 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling