Ikkita normla bosh to'plamning o'rtacha qiymatlarini taqqoslash Reja
Download 80.9 Kb.
|
ikkita normla bosh to\'plamning o\'rtacha qiymatlarini taqqoslash
- Bu sahifa navigatsiya:
- Tanlanmaning statistik taqsimoti
ikkita normla bosh to'plamning o'rtacha qiymatlarini taqqoslash Reja: Matematik statistika elementlari. Emperik taqsimot funksiyasi va uning xossalari. Tanlanma xarakteristikalari va ularning taqsimot qonunlari. Tanlanma taqsimotlari parametrlarining nuqtaviy va intervallik baholari. Ommaviy tasodifiy hodisalar bo’ysunadigan qonuniyatlarni aniqlash statistik ma’lumotlarni kuzatish natijalarini o’rganishga asoslanadi. Matematik statistikaning birinchi vazifasi - statistik ma’lumotlarni to’plash va (agar ma’lumotlar juda ko’p bo’lsa) gruppalash usullarini ko’rsatishdir. Matematik statistikaning ikkinchi vazifasi - statistik ma’lumotlarni tahlil qilish metodlarini tadqiqot masalalariga muvofiq ishlab chiqishdir. Bir jinsli ob’yektlar to’plamini bu ob’yektlarni xarakterlovchi biror sifat yoki son belgiga nisbatan o’rganish talab qilinsin. Masalan, agar biror xil detallar partiyasi bo’lsa, u holda detalning sifat belgisi bo’lib, uning standartligi, son belgisi bo’lib esa detalning o’lchami xizmat qilishi mumkin. Ba’zan yalpi, ya’ni to’plamdagi ob’yektlarning har birini o’rganilayotgan belgiga nisbatan tekshiriladi. Lekin yalpi tekshirish amalda ham qo’llaniladi. To’plam juda ko’p ob’yektlarni o’z ichiga olgan bo’lsa, u holda yalpi tekshirish jismonan mumkin emas. Bunday hollarda to’plamdan chekli sondagi ob’yektlar tasodifiy ravishda olinadi va ular o’rganiladi. Tanlanma to’plam deb, tasodifiy ravishda tanlab olingan ob’yektlar to’plamiga aytiladi. Bosh to’plam deb, tanlanma ajratiladigan ob’yektlar to’plamiga aytiladi. To’plam hajmi deb, bu to’plamdagi ob’yektlar soniga aytiladi. N-bosh to’plam hajmi, n-esa tanlanma to’plam hajmi Tanlanmaning statistik taqsimoti Bosh to’plamdan tanlanma olingan. Bunda x1 qiymat n1 marta, x2 qiymat n2 marta va hokazo xk qiymat, nk marta kuzatilgan, bunda ni = n bo’lib, n-tanlanma to’plam hajmi, ni- chastotalari bo’lsin. Kuzatilgan xi qiymatlar variantalar, variantlarning ortib borishi tartibida yozilgan ketma-ketligi esa variatsion qator deyiladi. Chastotalarni, tanlanma to’plamning hajmiga nisbati ni /n=wi yani nisbiy chastotalar deyiladi. Tanlanmaning statistik taqsimoti deb, variantalar va ularga mos chastotalar yoki nisbiy chastotalar ketma-ketligiga aytiladi. Statistik taqsimotni yana intervallar va ularga tegishli chastotalar ketma-ketligi ko’rinishida ham berish mumkin. Taqsimot deyilganda ehtimollar nazariyasida tasodifiy miqdorning mumkin bo’lgan qiymatlari va ularning ehtimollari orasidagi moslik, matematik statistikada esa kuzatilgan variantalar va ularning chastotalari va nisbiy chastotalari orasidagi moslik tushuniladi. Misol: Hajmi 20 bo’lgan tanlanmaning chastotalar taqsimoti berilgan: xi 2 6 12 ni 3 10 7 Nisbiy chastotalar taqsimoti ko’rinishida yozing. Yechish: w1=n1/n=3/20=0,15. w2=10/20=0,5. w3=0,35. U holda:
ni 0,15 0,5 0,35 Tekshirish: w1+w2+w3=0,15+0,5+0,35=1. Download 80.9 Kb. Do'stlaringiz bilan baham: |
ma'muriyatiga murojaat qiling