Ilm-fan muammolari yosh tadqiqotchilar talqinida
-Ta’rif. (q. [3], [4]) Agar
Download 4.85 Mb. Pdf ko'rish
|
“Ilm fan muammolari yosh tadqiqotchilar talqinida” mavzusidagi 9
- Bu sahifa navigatsiya:
- “Ilm-fan muammolari yosh tadqiqotchilar talqinida” mavzusidagi 9-sonli respublika ilmiy konferensiyasi
- Ishning asosiy natijasi.
- Xurramov Ro‘ziboy Jo‘ra o‘g‘li ToshDTU, magistranti Mullaboev Sardor Shokirjon o‘g‘li, ToshDTU, magistranti Erkayeva Lola Taxirovna
1-Ta’rif. (q. [3], [4]) Agar
3 c D C sohada ikki marta uzluksiz differensiallanuvchi ( ) 2 ( ) c c u z C D funksiya uchun ( ) ( ) 2 2 0, 0 c c c c dd u dd u . (1) tengsizliklar o‘rinli bo‘lsa, u holda ( ) c u z funksiyaga c D da 2-subgarmonik funksiya deyiladi (bu yerda 2 c dd z = - 3 Ј da standart hajm formasi). ( ) ( ) 2 1 2 , c c n c c n dd u dd u − − operatorlar Gessianlar bilan ham bog‘liqdir. Ikki marta silliq ( ) 2 c c u C D funksiya uchun 3 2 , 2 c c c k t k t k t i u dd u dz d z z z = differensial forma 2-tartibli ermit kvadrat forma bo‘ladi. Bu formani koordinatalarni mos unitar almashtirishlardan so‘ng, u diagonal shaklga keladi “Ilm-fan muammolari yosh tadqiqotchilar talqinida” mavzusidagi 9-sonli respublika ilmiy konferensiyasi 157 1 1 1 2 2 2 3 3 3 2 c c i dd u dz d z dz d z dz d z = + + , bu yerda 1 3 ,..., − 2 c k t u z z , ermit matritsaning xos qiymatlari va ( ) 3 1 2 3 , , = Ў . Unitar akslantirish 2 c dd z = differensial formani o‘zgartirmaydi. Bunga ko‘ra quyidagiga ega bo‘lamiz: ( ) ( ) ( ) ( ) 2 2 1 3 2 3 2! , 2! c c c c c c dd u H u dd u H u = = , bu yerda ( ) ( ) 1 2 1 2 1 2 1 3 2 3 , , c c H u H u = + = + + gessian vektori ( ) 3 . c u = Ў Bundan kelib chiqadi, ( ) ( ) 2 c c u z C D funksiya uchun har bir c o D nuqtada ( ) ( ) 1 2 0 0 0, 0 c c H u H u tengsizliklar o‘rinli bo‘lsa, u holda ( ) ( ) 2 c c u z C D funksiya kuchli 2-subgramonik bo‘ladi. Endi 3 D Ў soha va ( ) ( ) 2 u x C D funksiya berilgan bo‘lsin. Ushbu 2 k t u x x simmetrik matritsasini qaraymiz, ya’ni 2 2 . k t t k u u x x x x = Ortonormal almashtirishlar yordamida bu matritsani diagonali matritsaga o‘tkazish mumkin. 1 2 2 0 0 0 0 , 0 0 k t n u x x → bu yerda ( ) j j x = − Ў 2 k t u x x matritsaning xos qiymatlari. Ushbu ( ) 1 2 3 , , = xos qiymatlarning ( ) ( ) 1 1 1 2 3 H u H = = + + va ( ) ( ) 2 2 1 2 1 3 2 3 H u H = = + + Gessian funksiyasi berilgan bo‘lsin. 2-Ta’rif. Agar 3 D Ў sohada ( ) 2 ( ) u x C D funksiyaning xos qiymatlari vektori ( ) ( ) ( ) ( ) ( ) 1 2 3 , , x x x x = = ushbu ( ) ( ) ( ) ( ) 1 2 0, 0, H x H x x D (2) “Ilm-fan muammolari yosh tadqiqotchilar talqinida” mavzusidagi 9-sonli respublika ilmiy konferensiyasi 158 shartlarni qanoatlantirsa, u holda ( ) u x ga D sohada 2-qavariq funksiya deyiladi ( ) 2 u cv D − . Ishning asosiy natijasi. Biz 3 x Ў fazoni 3 Ј fazoga, 3 3 3 3 , x z x y i = + Ў Ј Ў Ў ( ) , z x iy = + 3 Ј kompleks fazoning haqiqiy 3-o‘lchovli qism fazosi sifatida joylashtiramiz. Teorema. Ikki marta silliq ( ) ( ) 2 3 , x u x C D D Ў funksiya 2-qavariq funksiya bo‘lishi uchun 3 y y Ў parametrga bog‘liq bo‘lmagan holda ( ) ( ) ( ) c c u z u x iy u x = + = funksiya c n y D D = Ў sohada 2-subgarmonik funksiya bo‘lishi zarur va yetarlidir. Isbot. Haqiqatan ham, ( ) c u z funksiya 2-subgarmonik funksiya bo‘lishi uchun ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 1 1 1 2 1 3 2 2 2 2 2 1 2 2 2 3 2 2 2 3 1 3 2 3 3 c c c c c c c k t c c c u z u z u z z z z z z z u z u z u z u z z z z z z z z z u z u z u z z z z z z z = matritsaning ( ) , 1,2,3 j j z j = = Ў xos qiymatlari ushbu ( ) ( ) 1 2 0, 0 H H tengsizliklarni qanoatlantirishi zarur va yetarli edi. Ammo, ( ) ( ) ( ) ( ) 2 2 2 2 1 4 c c k t k t k t k t u z u x iy u x u x z z z z z z x x + = = = tenglikga ko‘ra, ( ) 2 c k t u z z z va ( ) 2 k t u x x x matritsalarning xos qiymatlari ustma- ust tushadi. Shuning uchun, ( ) ( ) 2 2 c n y u cv D u sh D − Ў bo‘ladi. Bundan esa, ushbu natija kelib chiqadi: ( ) 2 2 u C cv D − I bo‘lishi uchun 3 3 c y D D = Ў Ј sohada ( ) 2 0 c c dd u va ( ) 2 0 c c dd u differensial formalarning o‘rinli bo‘lishi zarur va yetarlidir. “Ilm-fan muammolari yosh tadqiqotchilar talqinida” mavzusidagi 9-sonli respublika ilmiy konferensiyasi 159 Foydalanilgan adabiyotlar: 1. Aleksandrov A.D., Konvexe Polyeder. Akademie-Verlag, Berlin 1958. 2. Садуллаев А. Теория плюрипотенциала. Применения. Palmarium Akademic Publishing, 2012. – 316 С. 3. Абдуллаев Б., Садуллаев А., Теория потенциалов в классе m − cубгармонических функций.// Труды Математического Института имени В.А. Стеклова, – Москва, 2012. – № 279, C. 166–192. 4. Blocki Z., Weak solutions to the complex Hessian equation.// Ann.Inst. Fourier, Grenoble, V.5, 2005. – 55, pp. 1735 – 1756. 5. Trudinger N.S. and N.Chaudhuri., An Alexsandrov type theorem for k- convex functions.// (2005), pp. 305-314. 6. Trudinger N.S. and Wang X. J., Hessian measures I,// Topol. Methods Non linear Anal.19 (1997), pp. 225-239. 7. Trudinger N.S., Weak solutions of Hessian equations, Comm. Partial Differential Equations// 22 (1997), pp. 1251-1261. “Ilm-fan muammolari yosh tadqiqotchilar talqinida” mavzusidagi 9-sonli respublika ilmiy konferensiyasi 160 PAXTA TERISH APPARATI BARABANI HARAKATINI MODDELLASHTIRISH VA PARAMETRLARINI OPTIMALLASHTIRISH Azimov Bahtiyor Magropovich ToshDTU, texnika fanlari doktori, proffessor Xurramov Ro‘ziboy Jo‘ra o‘g‘li ToshDTU, magistranti Mullaboev Sardor Shokirjon o‘g‘li, ToshDTU, magistranti Erkayeva Lola Taxirovna ToshDTU, magistranti Annotatsiya: The article deals with the modeling of movement and optimization of the parameters of the vertical-spindle cotton picker for testing processes. 2 gives the Lazerential equations of vertical-spindle drum motion above Tourrange’s equations. Optimum control of vertical-spindle drum movement, that is, by applying Pontryagin’s maximum principle, the problem of fast movement was posed and research of the necessary conditions of optimal control based on the criterion of control quality. Joint functions were developed by controlling the Hamilton-Pontryagin function. Joint functions gave a control algorithm solution. Pontryagin’s boundary value problems were formulated on the basis of production mathematical models. The values of the motion of the object in the transition process were determined from the Runge-Kutta method of solving boundary value problems, and as a result, the moment inertia of the vertical-spindle drum, the viscosity and uniformity coefficients of the drum shaft were determined through the given resistance moments. Download 4.85 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling