Irratsional qatnashgan funksiyalarni integrallash
Binomial differensiallarni integrallash
Download 154.15 Kb.
|
matanaliz kurs ishi
Binomial differensiallarni integrallash
π (π₯ π1 π1 , π₯ π2 π2 , β¦ , π₯ ππ ππ )ππ₯ koβrinishdagi integrallar β’ bu yerda R β uz argumentlarining ratsional funksiyasi. Irratsionallik argumentlarda namoyon buladi. Berilgan integralni ratsional funksiyani integrallashga keltiriladi. Buning uchun kuyidagi uzgaruvchini almashtirishni bajarish kifoya: π₯ = π‘ π , π‘ = π₯ π , ππ₯ = ππ‘ πβ1ππ‘. β’Bu yerda n soni π1, π2, β¦ , ππ sonlarining eng kichik umumiy karralisi: n = EKUK(π1, π2, β¦ , ππ), 1. π (π₯ π1 π1 , π₯ π2 π2 , β¦ , π₯ ππ ππ )ππ₯ koβrinishdagi integrallar ΠΠΈΡΠΎΠ» 1. ππ₯ π₯ + π₯ 3 integralΠ½ΠΈ hisoblang. Bu yerda π₯ = π₯ 1 2 , π₯ 3 = π₯ 1 3 ; 1 2 π£π 1 3 kasrlarning umumiy maxraji 6. demak π₯ = π‘ 6 : ππ₯ π₯ + π₯ 3 = π₯ = π‘ 6 π‘ = π₯ 6 ππ₯ = 6π‘ 5ππ‘ = 6π‘ 5ππ‘ π‘ 3 + π‘ 2 = 6 π‘ 3ππ‘ π‘ + 1 = = 6 π‘ 2 β π‘ + 1 β 1 π‘ + 1 = 2π‘ 3 β 3π‘ 2 + 6π‘ β 6 ln π‘ + 1 + πΆ = = 2 π₯ + 3 π₯ 3 +6 π₯ 6 β 6 ln π₯ 6 + 1 + πΆ. π. πΉ(π ππ ππ , π ππ ππ , β¦ , π ππ ππ )π π koβrinishdagi integrallar β’ bu yerda π§ = ππ₯+π ππ₯+π . ππ₯ + π ππ₯ + π = π‘ π , π‘ = ππ₯ + π ππ₯ + π π , π₯ = ππ‘ π β π π β ππ‘ π , ππ₯ = π(ππ β ππ)π‘ πβ1 (π β ππ‘ π) 2 . π+. πΉ(π ππ ππ , π ππ ππ , β¦ , π ππ ππ )π π koβrinishdagi integrallar β’ ΠΠΈΡΠΎΠ» 2. ππ₯ (π₯β1)(π₯+1) 2 3 integralΠ½ΠΈ hisoblang. β’ ππ₯ (π₯β1)(π₯+1) 2 3 = π₯+1 π₯β1 3 ππ₯ π₯+1 . β’ x ni almashtiramiz π‘ = π₯+1 π₯β1 3 , π₯ = π‘ 3+1 π‘ 3β1 , ππ₯ = 6π‘2ππ‘ (π‘ 3β1) 2 ; bundan π + +. πΉ(π ππ ππ , π ππ ππ , β¦ , π ππ ππ )π π koβrinishdagi integrallar π₯ + 1 π₯ β 1 3 ππ₯ π₯ + 1 = β3ππ‘ π‘ 3 β 1 = β 1 π‘ β 1 + π‘ + 2 π‘ 2 + π‘ + 1 ππ‘ = = 1 2 ln π‘ 2 + π‘ + 1 (π‘ β 1) 2 + 3 arctg 2π‘ β 1 3 + πΆ, bu yerda π‘ = π₯+1 π₯β1 3 . 3. Binomial differensiallarni integrallash. β’ Binomal deb π₯ π(π + ππ₯ π ) πππ₯ (3) kurinishdagi differensiallarga aytiladi; bu yerda a, b β ixtiyoriy sonlar, m, n, p β ratsional sonlar. Bu ifodalarni kaysi xollarda integrallashini kurib chikamiz. 1) r - butun son (musbat, nol yoki manfiy). Bu xol (1) integralda kurilgan.Agar m va n kasrlahyb eng kichik umumiy maxrajini π deb belgilasak ifoda (3) π π₯ π ππ₯ boladi. bu yerda π‘ = π₯ π almashtirish masalani xal etadi. 3. Binomial differensiallarni integrallash. Karalayotgan ifodada π§ = π₯ π almashtirish bajaramiz. U xolda π₯ π(π + ππ₯ π ) πππ₯ = 1 π (π + ππ§) π π§ π+1 π β1 ππ§ va, bu yerda π+1 π β 1 = π deb olib π₯ π(π + ππ₯ π ) πππ₯ = 1 π (π + ππ§) π π§ πππ§ . (4) 3. Binomial differensiallarni integrallash. 2) Agar q butun son bulsa, avval kurilgan xol integral (2) vujudga keladi. bu yerda Ο deb r ning maxrajini belgilasak π‘ = π + ππ§ π = π + ππ₯ π π β’ almashtirish masalani xal etadi. β’ 3) (4) dagi ikkinchi ifodani kuyidagicha yozamiz: 1 π π+ππ§ π§ π π§ π+π . β’ Agar p + q butun son bulsa, avval kurilgan xol integral (2) vujudga keladi. bu yerda Ο deb r ning maxrajini belgilasak π‘ = π + ππ§ π§ π = ππ₯ βπ + π π β’ almashtirish masalani xal etadi. 4. Chebishev teoremasi. (4) dagi ikkala integral fakat karalgan uchta xolda integrallanadi, kolgan xolatlar bundan mustusno. ΠΠΈΡΠΎΠ» 3. ππ₯ 1+π₯ 4 4 integralΠ½ΠΈ hisoblang. ππ₯ 1 + π₯ 4 4 = π₯ 0 (1 + π₯ 4 ) β 1 4 ππ₯. bu yerda m = 0, n = 4, p = β 1 4 ; uchinchi xolat π+1 π + π = 0, Ο = 4. koβrsatilgan almashtirishni bajaramiz: π‘ = π₯ β4 + 1 4 = 1+π₯ 4 4 π₯ , π₯ = (π‘ 4 β 1) β 1 4 , ππ₯ = βπ‘ 3 π‘ 4 β 1 β 5 4ππ‘, bundan 1 + π₯ 4 4 = π‘π₯ = π‘ π‘ 4 β 1 β 1 4 , ππ₯ 1 + π₯ 4 4 = β π‘ 2ππ‘ π‘ 4 β 1 = 1 4 ln π‘ + 1 π‘ β 1 β 1 2 arctg π‘ + πΆ. Download 154.15 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling