Irratsional qatnashgan funksiyalarni integrallash


Binomial differensiallarni integrallash


Download 154.15 Kb.
bet4/5
Sana20.11.2023
Hajmi154.15 Kb.
#1788260
1   2   3   4   5
Bog'liq
matanaliz kurs ishi

Binomial differensiallarni integrallash

  1. 𝑅(π‘₯ π‘š1 𝑛1 , π‘₯ π‘š2 𝑛2 , … , π‘₯ π‘šπ‘˜ π‘›π‘˜ )𝑑π‘₯ ko’rinishdagi integrallar β€’ bu yerda R – uz argumentlarining ratsional funksiyasi. Irratsionallik argumentlarda namoyon buladi. Berilgan integralni ratsional funksiyani integrallashga keltiriladi. Buning uchun kuyidagi uzgaruvchini almashtirishni bajarish kifoya: π‘₯ = 𝑑 𝑛 , 𝑑 = π‘₯ 𝑛 , 𝑑π‘₯ = 𝑛𝑑 π‘›βˆ’1𝑑𝑑. β€’Bu yerda n soni 𝑛1, 𝑛2, … , π‘›π‘˜ sonlarining eng kichik umumiy karralisi: n = EKUK(𝑛1, 𝑛2, … , π‘›π‘˜), 1. 𝑅(π‘₯ π‘š1 𝑛1 , π‘₯ π‘š2 𝑛2 , … , π‘₯ π‘šπ‘˜ π‘›π‘˜ )𝑑π‘₯ ko’rinishdagi integrallar Мисол 1. 𝑑π‘₯ π‘₯ + π‘₯ 3 integralΠ½ΠΈ hisoblang. Bu yerda π‘₯ = π‘₯ 1 2 , π‘₯ 3 = π‘₯ 1 3 ; 1 2 π‘£π‘Ž 1 3 kasrlarning umumiy maxraji 6. demak π‘₯ = 𝑑 6 : 𝑑π‘₯ π‘₯ + π‘₯ 3 = π‘₯ = 𝑑 6 𝑑 = π‘₯ 6 𝑑π‘₯ = 6𝑑 5𝑑𝑑 = 6𝑑 5𝑑𝑑 𝑑 3 + 𝑑 2 = 6 𝑑 3𝑑𝑑 𝑑 + 1 = = 6 𝑑 2 βˆ’ 𝑑 + 1 βˆ’ 1 𝑑 + 1 = 2𝑑 3 βˆ’ 3𝑑 2 + 6𝑑 βˆ’ 6 ln 𝑑 + 1 + 𝐢 = = 2 π‘₯ + 3 π‘₯ 3 +6 π‘₯ 6 βˆ’ 6 ln π‘₯ 6 + 1 + 𝐢. 𝟐. 𝑹(𝒛 π’ŽπŸ π’πŸ , 𝒛 π’ŽπŸ π’πŸ , … , 𝒛 π’Žπ’Œ π’π’Œ )𝒅𝒙 ko’rinishdagi integrallar β€’ bu yerda 𝑧 = π‘Žπ‘₯+𝑏 𝑐π‘₯+𝑑 . π‘Žπ‘₯ + 𝑏 𝑐π‘₯ + 𝑑 = 𝑑 𝑛 , 𝑑 = π‘Žπ‘₯ + 𝑏 𝑐π‘₯ + 𝑑 𝑛 , π‘₯ = 𝑑𝑑 𝑛 βˆ’ 𝑏 π‘Ž βˆ’ 𝑐𝑑 𝑛 , 𝑑π‘₯ = 𝑛(π‘Žπ‘‘ βˆ’ 𝑏𝑐)𝑑 π‘›βˆ’1 (π‘Ž βˆ’ 𝑐𝑑 𝑛) 2 . 𝟐+. 𝑹(𝒛 π’ŽπŸ π’πŸ , 𝒛 π’ŽπŸ π’πŸ , … , 𝒛 π’Žπ’Œ π’π’Œ )𝒅𝒙 ko’rinishdagi integrallar β€’ Мисол 2. 𝑑π‘₯ (π‘₯βˆ’1)(π‘₯+1) 2 3 integralΠ½ΠΈ hisoblang. β€’ 𝑑π‘₯ (π‘₯βˆ’1)(π‘₯+1) 2 3 = π‘₯+1 π‘₯βˆ’1 3 𝑑π‘₯ π‘₯+1 . β€’ x ni almashtiramiz 𝑑 = π‘₯+1 π‘₯βˆ’1 3 , π‘₯ = 𝑑 3+1 𝑑 3βˆ’1 , 𝑑π‘₯ = 6𝑑2𝑑𝑑 (𝑑 3βˆ’1) 2 ; bundan 𝟐 + +. 𝑹(𝒛 π’ŽπŸ π’πŸ , 𝒛 π’ŽπŸ π’πŸ , … , 𝒛 π’Žπ’Œ π’π’Œ )𝒅𝒙 ko’rinishdagi integrallar π‘₯ + 1 π‘₯ βˆ’ 1 3 𝑑π‘₯ π‘₯ + 1 = βˆ’3𝑑𝑑 𝑑 3 βˆ’ 1 = βˆ’ 1 𝑑 βˆ’ 1 + 𝑑 + 2 𝑑 2 + 𝑑 + 1 𝑑𝑑 = = 1 2 ln 𝑑 2 + 𝑑 + 1 (𝑑 βˆ’ 1) 2 + 3 arctg 2𝑑 βˆ’ 1 3 + 𝐢, bu yerda 𝑑 = π‘₯+1 π‘₯βˆ’1 3 . 3. Binomial differensiallarni integrallash. β€’ Binomal deb π‘₯ π‘š(π‘Ž + 𝑏π‘₯ 𝑛 ) 𝑝𝑑π‘₯ (3) kurinishdagi differensiallarga aytiladi; bu yerda a, b – ixtiyoriy sonlar, m, n, p – ratsional sonlar. Bu ifodalarni kaysi xollarda integrallashini kurib chikamiz. 1) r - butun son (musbat, nol yoki manfiy). Bu xol (1) integralda kurilgan.Agar m va n kasrlahyb eng kichik umumiy maxrajini πœ† deb belgilasak ifoda (3) 𝑅 π‘₯ πœ† 𝑑π‘₯ boladi. bu yerda 𝑑 = π‘₯ πœ† almashtirish masalani xal etadi. 3. Binomial differensiallarni integrallash. Karalayotgan ifodada 𝑧 = π‘₯ 𝑛 almashtirish bajaramiz. U xolda π‘₯ π‘š(π‘Ž + 𝑏π‘₯ 𝑛 ) 𝑝𝑑π‘₯ = 1 𝑛 (π‘Ž + 𝑏𝑧) 𝑝 𝑧 π‘š+1 𝑛 βˆ’1 𝑑𝑧 va, bu yerda π‘š+1 𝑛 βˆ’ 1 = π‘ž deb olib π‘₯ π‘š(π‘Ž + 𝑏π‘₯ 𝑛 ) 𝑝𝑑π‘₯ = 1 𝑛 (π‘Ž + 𝑏𝑧) 𝑝 𝑧 π‘žπ‘‘π‘§ . (4) 3. Binomial differensiallarni integrallash. 2) Agar q butun son bulsa, avval kurilgan xol integral (2) vujudga keladi. bu yerda Ο… deb r ning maxrajini belgilasak 𝑑 = π‘Ž + 𝑏𝑧 𝜐 = π‘Ž + 𝑏π‘₯ 𝑛 𝜐 β€’ almashtirish masalani xal etadi. β€’ 3) (4) dagi ikkinchi ifodani kuyidagicha yozamiz: 1 𝑛 π‘Ž+𝑏𝑧 𝑧 𝑝 𝑧 𝑝+π‘ž . β€’ Agar p + q butun son bulsa, avval kurilgan xol integral (2) vujudga keladi. bu yerda Ο… deb r ning maxrajini belgilasak 𝑑 = π‘Ž + 𝑏𝑧 𝑧 𝜐 = π‘Žπ‘₯ βˆ’π‘› + 𝑏 𝜐 β€’ almashtirish masalani xal etadi. 4. Chebishev teoremasi. (4) dagi ikkala integral fakat karalgan uchta xolda integrallanadi, kolgan xolatlar bundan mustusno. Мисол 3. 𝑑π‘₯ 1+π‘₯ 4 4 integralΠ½ΠΈ hisoblang. 𝑑π‘₯ 1 + π‘₯ 4 4 = π‘₯ 0 (1 + π‘₯ 4 ) βˆ’ 1 4 𝑑π‘₯. bu yerda m = 0, n = 4, p = βˆ’ 1 4 ; uchinchi xolat π‘š+1 𝑛 + 𝑝 = 0, Ο… = 4. ko’rsatilgan almashtirishni bajaramiz: 𝑑 = π‘₯ βˆ’4 + 1 4 = 1+π‘₯ 4 4 π‘₯ , π‘₯ = (𝑑 4 βˆ’ 1) βˆ’ 1 4 , 𝑑π‘₯ = βˆ’π‘‘ 3 𝑑 4 βˆ’ 1 βˆ’ 5 4𝑑𝑑, bundan 1 + π‘₯ 4 4 = 𝑑π‘₯ = 𝑑 𝑑 4 βˆ’ 1 βˆ’ 1 4 , 𝑑π‘₯ 1 + π‘₯ 4 4 = βˆ’ 𝑑 2𝑑𝑑 𝑑 4 βˆ’ 1 = 1 4 ln 𝑑 + 1 𝑑 βˆ’ 1 βˆ’ 1 2 arctg 𝑑 + 𝐢.


Download 154.15 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling