Issn 2181-1296 ilmiy axborotnoma научный вестник scientific journal
Download 202.73 Kb. Pdf ko'rish
|
SamDU (axborotnoma), 2021 yil, 1-son(II)
94
ILMIY AXBOROTNOM A M EXANIKA 2021-yil, 1-son Свободные крутильны е колебания круглого упругого конического стержня Аннотация. В статье в цилиндрической системее координат рассмотрена задача о крутильных колебаниях кругового конического упругого стержня. Считается, что колебания стержня возбуждаются под воздействием динамической нагрузки, действую- щей на его поверхности. Радиус поперечного сечения стержня считается линейно зависящим от продольной координаты. Исходя из уравнений для крутильных колебаний упругого тела и применяя итегральные преобразования Фурье и Лапласа выведены уравнения крутильных колебаний кругового конического стержня. На основе полученного уравнения решена задача о гармонических крутильных колебаниях конического стержня. Приведены частотное уравнение и зависимость частоты от волнового числа. На основе полученных числовых резултатов сделаны соответствующие выводы. Клю чевы е слова: конический стержень, приближенное уравнение, крутильные колебания, перемещение, напряжение, частота. 1. Introduction. At the present level of development of science and technology, the study of non- stationary oscillations of elements of engineering structures is relevant [1-3]. In most cases, such fluctuations are based on classical theories [4-6]. Classical theories generally describe low frequency vibrations well [7-9]. Therefore, in recent years, great importance has been attached to the study of unsteady vibrations of shells, plates and rods on the basis of certain equations [10-13]. In addition to unsteady vibrations of structural elements, it is also important to study their free vibrations based on the given equations. In this regard [14-16], the articles consider the issues of free vibrations of lamellar and conical shells. This article is devoted to the development of equations of torsional vibrations of a conical rod [17.18], determined by the research method, and to the study of harmonic vibrations of a conical rod based on the results obtained. 2. Form ulation of the problem. Considering the problem according to ( r, 0 , z ) of torsional vibrations of circular elastic conical rods in a cylindrical coordinate system. Let us choose the radius of the rod as a linear function of the longitudinal coordinate, that is, by the form Г = Г + QZ (Figure 1). Here r = const , Q = tgp Insofar as we are considering torsional vibrations that are symmetrical about an axis, the problem 0 - is not a change in the angle that’s why only U 0{r, z , t ) torsional displacement nonzero and 8W 1 U 0 = — dr (1) Here W1 - transverse wave potential [3]. Non-zero stress in torsional vibrations are represented by the potential W1 -as follows 1 d d 2 r dr d r 2 Wj &Z0 = - V d 2 W drdz (2) in this case ц- Lame coefficient. The torsional vibrations of the rod are in a cylindrical coordinate system described by the following equation: d&„ ■ + d ^0z + 2.-T0- = P d U a d t 2 (3) d r d z v / Here p - is a shell and barrel material density. It is believed that the torsional vibrations of the rod are caused by an external force f 0 0(z, t ) acting on its surface. In this case, the boundary condition on the surface of the cone looks like as following: (Tr 0 - Q(Tz 0 = A of ra(Z ,t) > A 0 = 1 + Q2- (4) Initial conditions are equal to zero, i.e. t = 0 when u = dU 0 dt = 0 Download 202.73 Kb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling