Количественный анализ его методы их описание. Современные инструментальные методы анализа


Download 0.64 Mb.
bet8/20
Sana18.06.2023
Hajmi0.64 Mb.
#1563903
TuriЛитература
1   ...   4   5   6   7   8   9   10   11   ...   20
Bog'liq
2 5418224883127560687

Термический анализ — раздел материаловедения, изучающий изменение свойств материалов под воздействием температуры. Обычно выделяют несколько методов, отличающихся друг от друга тем, какое свойство материала измеряется:

  • Дифференциально-термический анализ (ДТА): температура фазовых превращений

  • Дифференциально-сканирующая калориметрия (ДСК): теплота фазовых превращений

  • Термогравиметрический анализ (ТГА): масса образца

  • Термомеханический анализ (ТМА): линейный размер образца

  • Дилатометрия (Дил): объём и линейный размер образца

  • Динамический механический анализ (ДМА): механическая жёсткость и амортизация

  • Диэлектрический термический анализ (ДЭТА): диэлектрическая проницаемость и коэффициент потерь

  • Анализ выделяемых газов (ГТА): газовые продукты разложения

  • Термооптический анализ (ТОА): оптические свойства

  • Визуально-политермический анализ (ВПА): изменение формы образца

  • Лазерный импульсный анализ (ЛИА): температурный профиль

  • Термомагнитный анализ (ТМагА): магнитные свойства

Под синхронным термическим анализом (СТА) обычно понимают совместное использование термогравиметрии (ТГА) и дифференциально-сканирующей калориметрии (ДСК) одного и того же образца на одном инструменте. В этом случае условия эксперимента практически одинаковы для обоих сигналов (атмосфера, скорость потока газа, давление насыщенного пара над образцом, скорость нагрева и охлаждения, термический контакт образца с тиглем и датчиком температуры, эффект излучения и т. д.). Полученная информация может быть еще более расширена при оснащении инструмента СТА системой анализа газовой фазы (ГТА) — ИК-фурье спектроскопией (ИК-фурье) или масс-спектрометрией (МС).[1]
Другие (менее распространенные) методы основаны на измерении звука или эмиссии света от образца, электрического разряда от диэлектрического материала или механической релаксации в нагруженном образце.
Объединяющей сущностью всех перечисленных методов является то, что отклик образца записывается в зависимости от температуры (и времени).
Обычно изменение температуры осуществляется по заранее заданной программе — либо это непрерывное увеличение или уменьшение температуры с постоянной скоростью (линейный нагрев/охлаждение), либо серия измерений при различной температуре (ступенчатые изотермические измерения). Используются и более сложные температурные профили, использующие осциллирующую (обычно в виде синусоидальных или прямоугольных колебаний) скорость нагревания (Термический анализ с модулированной температурой) или изменяющие скорость нагревания в ответ на изменение свойств системы (Термический анализ контролируемый образцом).
В дополнение к управлению температурой образца также важно управлять средой, в которой проводятся измерения (например, атмосферой). Измерения могут быть выполнены на воздухе или в среде инертного газа (например, аргона или гелия). Также используется восстановительная или химически активная газовая среда, образцы помещаются в воду или другую жидкость. Обращённая газовая хроматография является методикой, которая изучает взаимодействие газов и паров с поверхностью — измерения часто проводятся при различных температурах, так что они могут быть рассмотрены как одна из разновидностей термического анализа.
Атомно-силовая микроскопия использует тонкий зонд для отображения топологии и механических свойств поверхностей с высокой пространственной разрешающей способностью. Управляя температурой горячего зонда и/или образца можно реализовать метод термического анализа с пространственным разрешением.
Термический анализ также часто используется как один из основных методов изучения теплопередачи через структуры. Базовые данные для моделирования поведения и свойств таких систем получают измеряя теплоёмкость и теплопроводность.
Предложен Я. Гейровским в 1922 году, когда он изучал влияние напряжения, приложенного к ртутной капле, погружённой в водный раствор, на величину поверхностного натяжения («электрокапиллярный эффект»), он заметил, что величина тока через каплю зависит от состава раствора. Доработав эту идею, он создал метод, который основан на измерении зависимости тока от напряжения на ртутно-капельном электроде. Получающиеся зависимости, так называемые вольт-амперные кривые или вольтамперограммы, зависят от состава раствора и позволяют проводить одновременно качественный и количественный анализ содержащихся в растворе микропримесей. В 1959 году за метод полярографии Гейровскому была присуждена Нобелевская премия по химии.
В СССР первым исследователем метода полярографии была Евгения Варасова. Она работала в Чехословакии ассистентом профессора Я. Гейровского, и, вернувшись в Ленинград, перевела его книгу «Полярографический метод. Теория и практическое применение». В 1938 году Особой тройкой УНКВД ЛО Евгения Варасова была приговорена по ст. 58-6 УК РСФСР к высшей мере наказания и расстреляна[1].
Протекание электрического тока в водном растворе связано с движением ионов, образованных в результате электролитической диссоциации. Протекание тока через металлы и углеродные материалы обусловлено движением электронов. Поэтому на границе электрод-раствор должен существовать какой-то процесс, обеспечивающий переход потока ионов в поток электронов, иначе ток не пойдёт. Такой процесс представляет собой электрохимическую реакцию. Количество прореагировавшего вещества определяется законом Фарадея, то есть пропорционально прошедшему через электрод заряду:
�=�экв∗��∗� ,
где M — масса прореагировавшего вещества, Mэкв — эквивалентная масса прореагировавшего вещества, Q — прошедший через электрод заряд, z — количество электронов, участвующих в превращении одной молекулы или одного иона, F — число Фарадея, задающее коэффициент пропорциональности. Число Фарадея равно 96485 Кл/моль и представляет собой число Авогадро, умноженное на заряд электрона.
Если отнести уравнение выше к единице времени, то масса превратится в массовую скорость реакции (поток вещества) J, а заряд — в ток i, которые обычно относят к единице поверхности электрода (плотность тока):
�=�экв∗��∗� .
Метод основан на анализе кривых зависимостей силы тока от приложенного к электрохимической ячейке напряжения — так называемых полярограмм. В зависимости от формы и скорости изменения поляризующего напряжения различают постояннотоковую (классическую), переменнотоковую, высокочастотную, импульсную, осциллографическую полярографию; варианты метода имеют различные чувствительность (минимально определяемая концентрация вещества) и разрешающую способность (допустимое отношение концентраций определяемого компонента и сопутствующих).
В ячейке для полярографии присутствуют поляризуемый и неполяризуемый электроды, площадь первого должна быть значительно меньше площади второго — в таком случае идущая на нём электродная реакция не вызывает заметных химических изменений в растворе или изменения разности потенциалов. В качестве поляризуемого электрода могут быть использованы ртутно-капающий электрод, стационарный ртутный электрод, твёрдые электроды из графита, благородных металлов и пр.
Почему ртуть?[править | править код]
Выбор ртутного электрода в первых вариантах полярографии не случаен. На ртутном электроде в водном растворе, содержащем электрохимически неактивные соли, например, фторид натрия, в широком диапазоне напряжений не протекает никаких реакций, связанных с протеканием тока через электрод. Поэтому, если прикладывается какое-то напряжение к ртутно-капельному электроду, ток остаётся нулевым, так как никаких реакций на электроде нет. Такой электрод называется поляризуемым, от слова «поляризация», что в данном случае означает отклонение потенциала (напряжения) на электроде от равновесного значения. Возможность изменять напряжение позволяет измерить вольтамперограмму.
В качестве противоположного примера — обычно платиновый электрод в водном растворе. За счёт высоких каталитических свойств платины при приложении отрицательных напряжений на платине выделяется водород с соответствующим протеканием тока (восстановление воды), а при приложении положительных потенциалов — кислород (окисление воды) с соответствующим протеканием тока в одном и другом направлении. Поэтому невозможно произвольно менять напряжение на платиновом электроде в водном растворе, не создавая значительного тока. Такой электрод называется неполяризуемым. Для него нельзя произвольно изменять напряжение и измерить аналитическую вольтамперограмму. Капающий электрод позволяет всё время обновлять поверхность датчика. Есть и некоторые другие достоинства ртутного электрода, связанные с химическими свойствами ртути.
Недостатком является токсичность ртути.
Применение метода[править | править код]
Полярография широко используется в металлургии, геологии, органической химии[2], медицине, электрохимии для определения ряда ионов (кадмий, цинк, свинец и др.), органических веществ (аминокислот, витаминов), их концентрации, для изучения механизма электродных и фотохимических реакций, протекающих в фотоэлектрохимических ячейках (см. ячейка Гретцеля).

Молекулярная спектроскопия (фотометрия, спектрофотометрия)



Download 0.64 Mb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   ...   20




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling