Конспект лекций Часть 2 Омск 2006 (075. 8) Ббк 34. 202: 34. 206я73 Б95
Download 0.67 Mb.
|
Материаловедение ч2
Газовая цементация впервые применена Павлом Петровичем Аносовым в тридцатых годах девятнадцатого столетия на златоустовском заводе, в СССР впервые внедрена на московском автозаводе имени Лихачева. Ее проводят в печах непрерывного действия. Детали помещают в печь на поддонах, подвесках или в корзинах. В качестве карбюризатора применяют естественные (природные) и искусственные газы. Используют жидкие карбюризаторы (бензол, керосин, синтин), которые подаются в печь через капельницу.
При газовой цементации детали находятся в постоянном контакте с углеродосодержащими газами. При высокой температуре газы диссоциируют с выделением атомарного углерода, который оседает на поверхности стали и диффундирует в глубину детали. При газовой цементации выдержка составляет 4 – 5 ч на 1 мм глубины науглероженного слоя. По сравнению с цементацией в твердом карбюризаторе газовая цементация имеет ряд преимуществ: нагрев деталей происходит значительно быстрее и сокращается необходимое время выдержки при цементации; возможность регулировки количества и состава цементирующего газа; возможность полной механизации и автоматизации процесса; улучшение условий труда. Газовая цементация получила широкое распространение в массовом и крупносерийном производстве, где затраты на специальное оборудование экономически целесообразны. Микроструктура низкоуглеродистой стали после цементации изменяется от поверхности к центру детали (рис. 7). Поверхностная зона (заэвтектоидная) имеет структуру «перлит и цементит», затем идут эвтектоидная зона (перлит) и переходная, доэвтектоидная (перлит и феррит). Чем ближе к сердцевине, тем больше в переходной зоне феррита и меньше перлита. За толщину цементованного слоя принимают расстояние от поверхности до середины переходной (третьей) зоны. Задача цементации – получить высокую поверхностную твердость и износостойкость при вязкой сердцевине – не решается одной цементацией. Цементацией достигается лишь благоприятное распределение углерода по сечению. Окончательно формирует свойства цементованной детали последующая закалка с низким отпуском, при которой на поверхности получается мартенсит, а в сердцевине сохраняются низкая твердость и высокая вязкость. Рис. 7. Микроструктура цементованной стали Такая термическая обработка обеспечивает твердость поверхностного слоя HRC60 – 64 у углеродистых сталей и HRC58 – 62 – у легированных. Твердость сердцевины – HRC25 – 35 (в зависимости от состава стали). Для закалки цементованные детали нагревают до 820 – 850С с охлаждением в воде. Это обеспечивает измельчение зерна и закалку цементованного слоя, а также частичную перекристаллизацию с измельчением зерна сердцевины. Структура поверхностного слоя – мартенсит с небольшим количеством вторичных карбидов, твердость – HRC56 – 63. При повышенных требованиях к свойствам деталей применяют двойную закалку или нормализацию и закалку. Первая закалка (или нормализация) – для измельчения зерна и исправления структуры перегретой стали (температура – 880 – 900°С), вторая закалка (неполная) – для получения мартенсита в поверхностном слое (температура – 760 – 780°С). Цементованные стали после закалки обязательно подвергают низкому отпуску при температуре 160 – 180°С. Цементация с последующей термической обработкой повышает предел выносливости стальных деталей вследствие образования в поверхностном слое остаточного напряжения сжатия и понижает чувствительность к концентраторам напряжений. Цементованная сталь обладает высокой износостойкостью и контактной прочностью. Download 0.67 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling