Ko‘p o‘lchovli tasodifiy miqdorlar va ularning birgalikdagi taqsimot funksiyasi Ikki o‘lchovli diskret tasodifiy miqdor va uning taqsimot qonuni


Download 1.13 Mb.
bet6/10
Sana25.04.2023
Hajmi1.13 Mb.
#1396498
1   2   3   4   5   6   7   8   9   10
Bog'liq
Ko‘p o‘lchovli tasodifiy miqdorlar

Shartli taqsimot qonunlari

(X,Y) ikki o‘lchovlik t.m.ni tashkil etuvchi X va Y t.m.lar bog‘liq bo‘lsa, ularning bog‘liqligini xarakterlovchi shartli taqsimot qonunlari tushunchalari keltiriladi.




, (3.6.1)

ehtimolliklar to‘plami, ya’ni lar Y t.m.ning dagi shartli taqsimot qonuni deyiladi. Bu yerda


.
Xuddi shunday,
, (3.6.2)
ehtimolliklar to‘plami, ya’ni lar X t.m.ning dagi shartli taqsimot qonuni deyiladi.
3.5-misol. (X,Y) ikki o‘lchovlik t.m.ni birgalikdagi taqsimot jadvali berilgan:

X \ Y

1

2

3

0.1

0.12

0.08

0.40

0.2

0.16

0.10

0.14
Quyidagilarni toping: a) X av Y t.m.larning alohida taqsimot qonunlari; b) X t.m.ning Y=2 dagi shartli taqsimot qonuni.
a) va tengliklardan:

Y

1

2

3

P

0.28

0.10

0.54




X

0.1

0.2

P

0.60

0.40

,

b) (3.6.2) formulaga asosan: ,


. X t.m.ning Y=2 dagi shartli taqsimot qonuni quyidagiga teng:

X

0.1

0.2






Endi (X,Y) ikki o‘lchovli t.m. uzluksiz bo‘lgan holni ko‘ramiz. (X,Y) t.m.ning birgalikdagi zichlik funksiyasi, va lar esa X va Y t.m.larning alohida zichlik funksiyalari bo‘lsin.



  • Y t.m.ning X=x bo‘lgandagi shartli zichlik funksiyasi


(3.6.3)

ifodaga orqali aniqlanadi.


Shartli zichlik funksiyasi zichlik funksiyasining kabi xossalariga egadir.

  • Xuddi shunday, X t.m.ning Y=y bo‘lgandagi shartli zichlik funksiyasi


(3.6.4)
tenglik orqali aniqlanadi.
(3.6.3) va (3.6.4) tengliklarni hisobga olib, zichlik funksiyani quyidagi ko‘rinishda yozish mumkin:

. (3.6.5)

(3.6.5) tenglik zichlik funksiyalarning ko‘paytirish qoidasi(teoremasi) deyiladi.

3.6-misol. (X,Y) ikki o‘lchovli uzluksiz t.m.ning birgalikdagi zichlik funksiyasi berilgan:

25-rasm.


bu yerda (25-rasm). 1) larni toping. 2) X va Y t.m.larning bog‘liqligini ko‘rsating.
1) Avval o‘zgarmas son C ni topamiz:

.

Bundan . ni topamiz:


, .

ni (3.6.4) formulasidan foydalanamiz, buning uchun dastlab ni hisoblash kerak:

, ,

2) X va Y t.m.lar bog‘liqsiz bo‘lsa, tenglik o‘rinli. , va funksiyalarlar bir-biridan farqli bo‘lganligi uchun X va Y t.m.lar bog‘liq.




Download 1.13 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   10




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling