(X,Y) ikki o‘lchovli t.m. taqsimot qonunini
(3.2.1)
formula yordamida yoki quyidagi jadval ko‘rinishida berish mumkin:
(3.2.2)
bu yerda barcha ehtimolliklar yig‘indisi birga teng, chunki birgalikda bo‘lmagan hodisalar to‘la gruppani tashkil etadi . (3.2.1) formula ikki o‘lchovli diskret t.m.ning taqsimot qonuni, (3.2.2) jadval esa birgalikdagi taqsimot jadvali deyiladi.
(X,Y) ikki o‘lchovli diskret t.m.ning birgalikdagi taqsimot qonuni berilgan bo‘lsa, har bir komponentaning alohida (marginal) taqsimot qonunlarini topish mumkin. Har bir uchun hodisalar birgalikda bo‘lmagani sababli: . Demak, , .
3.1-misol. Ichida 2 ta oq, 1 ta qora, 1 ta ko‘k shar bo‘lgan idishdan tavakkaliga ikkita shar olinadi. Olingan sharlar ichida qora sharlar soni X t.m. va ko‘k rangdagi sharlar soni Y t.m. bo‘lsin. (X,Y) ikki o‘lchovli t.m.ning birgalikdagi taqsimot qonunini tuzing. X va Y t.m.larning alohida taqsimot qonunlarini toping.
X t.m. qabul qilishi mumkin qiymatlari: 0 va 1: Y t.m.ning qiymatlari ham 0 va 1. Mos ehtimolliklarni hisoblaymiz: (yoki );
; ; .
(X,Y) vaktorning taqsimot jadvali quyidagicha ko‘rinishga ega:
Bu yerdan , ; , kelib chiqadi. X va Y t.m.larning alohida taqsimot qonunlari quyidagi ko‘rinishga ega bo‘ladi:
va .
Do'stlaringiz bilan baham: |