Глава 2
Производные и дифференциалы многих переменных
2.1 Частные производные нескольких переменных
Пусть задана функция двух переменных . Дадим аргументу приращение , а аргумент оставим неизменным. Тогда функция получит приращение , которое называется частным приращением по переменной и обозначается :
.
Аналогично, фиксируя аргумент и придавая аргументу прираще-ние , получим частное приращение функции по переменной :
.
Величина называется полным прира-щениием функции в точке .
Определение 4. Частной производной функции двух переменных по одной из этих переменных называется предел отношения соответствующего частного приращения функции к приращению данной переменной, когда последнее стремится к нулю (если этот предел существует). Обозначается частная производная так: или , или .
Таким образом, по определению имеем:
,
.
Частные производные функции вычисляются по тем же правилам и формулам, что и функция одной переменной, при этом учитывается, что при дифференцировании по переменной , считается постоянной, а при дифференцировании по переменной постоянной считается .
Пример 3. Найти частные производные функций:
а) ; б) .
Решение. а) Чтобы найти считаем постоянной величиной и дифференцируем как функцию одной переменной :
.
Аналогично, считая постоянной величиной, находим :
.
Решение.
б) ;
.
Геометрический смысл частных производных функции двух переменных
Графиком функции z= ƒ (х; у) является некоторая поверхность . График функции z = ƒ (х; у0) есть линия пересечения этой поверхности с плоскостью у = уо. Исходя из геометрического смысла производной для функции одной переменной , заключаем, что ƒ'x(хо;уо) = tg а, где а — угол между осью Ох и касательной, проведенной к кривой z = ƒ (х; у0) в точке Мо(хо;уо; ƒ(хо;уо)) (см. рис. 208).
Аналогично, f'y (х0;у0)=tgβ.
Do'stlaringiz bilan baham: |