Leonid Zhmud The Origin of the History of Science in Classical Antiquity
Download 1.41 Mb. Pdf ko'rish
|
The Origin of the History of Science in
De loc. in hom. 46; De affect. 45.
98 Jouanna. De l’art, 187. For a similar argument, see Dissoi logoi 6, 11. Aristotle, as well as Archytas, admitted the possibility of an accidental discovery: in their experi- ments, it was not wit but chance that made the poets discover how to produce such effects in their plots ( Poet. 1454a 10f.). See also Protr. fr. 11 Ross: sumbaíh mèn gàr Àn kaì @pò túch~ ti @gaqón. 99 See above, 58f. 100 VM 2, De arte 9. See also: Isoc. Antid. 83 (the new is not easy to find) and Ad Dem. 18–19 (it is easier to learn what has already been discovered). 101 This point was insisted upon both by Isocrates ( Panath. 208–209) and Plato (Res. 3. Archytas and Isocrates 69 and wrote about, offered better opportunities for progress, both general and in- dividual, than medicine, which deals with a multitude of individual cases and relies on practical experience, not on general rules alone. This is probably what accounts for the disagreement between the mathematician and the doctor on how easily new knowledge is discovered and assimilated. As a sharp observa- tion in one of the Hippocratic treatises shows ( De loc. in hom. 41), doctors were well aware of the difference between a system of clear and well-defined rules, on the one hand, and medical knowledge as such, on the other: Medicine cannot be learned quickly because it is impossible to create any estab- lished principle in it (kaqesthkó~ ti sófisma), the way that a person who learns writing according to one system that people teach understands everything; for all who understand writing in the same way do so because the same symbol does not sometimes become opposite, but is always steadfastly the same and not subject to chance. Medicine, on the other hand, does not do the same thing at this moment and the next, and it does opposite things to the same person, and at that things that are self-contradictory. 102 Then the author gives a number of examples showing how similar means can lead to opposite results and different means to similar results (41–44). As an an- tithesis to medicine, the Hippocratic cites the generally known rules of writing, but this idea could easily be illustrated by the example of mathematics as well. In Nicomachean Ethics, Aristotle, characterizing medicine in practically the same terms, 103 remarks that the difference between scientific knowledge (ëpi- st2mh) and practical reason (frónhsi~) is manifest, in particular, from the fol- lowing fact (1142a 11–20): While young men become geometricians and mathematicians and wise in matters like these, it is thought that a young man of practical wisdom cannot be found. The cause is that such wisdom is concerned not only with universals but with par- ticulars, which become familiar from experience, for it is length of time that gives experience; indeed one might ask this question too, why a boy (pa$~) can become a mathematician, but not a wise man (sofó~) or a natural scientist (fusikó~). Is it because the objects of mathematics exist by abstraction, while the first prin- ciples of these other subjects come from experience, and because the young men have no conviction about the latter but merely use the proper language, while the essence of mathematical objects is plain enough to them? 104 455b 7f.). On the rapid progress in the acquisition of knowledge by those who con- versed with Socrates, see Pl. Tht. 150d–151a (qaumastòn Ôson ëpididónte~ … pálin ëpididóasi). 102 Transl. by P. Potter. On the importance of kairó~ in medicine, see De loc. in hom. 44. 103 It has no fixed principle (oÿdèn êsthkò~ Écei, 1104a 4f.), the physicians must tà prò~ tòn kairòn skope$n (ibid.); what a feverish patient generally benefits from may not prove useful in each particular case (1180b 9). 104 Transl. by J. Barnes. In EE, Aristotle illustrates this idea with the example of a fa- mous mathematician: “Hippocrates was a geometer, but in other respects was Chapter 2: Science as técnh: theory and history 70 An important parallel to the motifs of scientific progress and the ease of learning mathematics is found in Protrepticus, written when Aristotle was at the Academy. (Let us note that here Aristotle brings philosophy and mathemat- ics together, rather than opposing them to each other.) Asserting that the ac- quisition of philosophical knowledge is possible, useful, and (comparatively) easy, Aristotle supports the ease of learning philosophy by the following argu- ments: those who pursue it get no reward from men to spur them, yet their prog- ress in exact knowledge is more rapid compared with their success in other téc- nai. 105 In the passages parallel to this text, Iamblichus speaks of the rapid prog- ress in both philosophy and mathematics, 106 while Proclus mentions mathemat- ics alone. 107 Considering the passage from the Nicomachean Ethics quoted above and several passages in the Metaphysics (981b 13–22, 982b 22f.) close in meaning to Protrepticus, we can safely surmise that while discussing the (relative) ease of acquiring exact knowledge and the resulting rapid progress of theoretical sciences, Aristotle referred not to philosophy alone, but to mathe- matics as well. 108 thought silly and foolish, and once on a voyage was robbed of much money by the custom collectors of Byzantium, owing to his silliness, as we are told.” (1247a 17f. = 42 A 2, transl. by J. Barnes). 105 tò gàr m2te misqoñ parà tõn @nqrøpwn ginoménou to$~ filosofoñsi, di’ Ön suntónw~ oÛtw~ Àn diapon2seian, polú te proeménou~ eı~ tà~ Álla~ técna~ Ômw~ ëx ölígou crónou qéonta~ parelhluqénai ta$~ @kribeíai~, shme$ón moi doke$ t4~ perì t3n filosofían e£nai ®+stønh~ (Iambl. Protr., 40.19–20 = Protr. fr. 5 Ross = B 55 Düring). The rapid progress in mathematics was also mentioned in an early Academic treatise, see below, 87ff. 106 Iambl. De comm. math. sc., 83.6–22 = Protr. fr. 8 Ross = C 55:2 Düring: tosoñton dè nñn proelhlúqasin ëk mikrõn @formõn ën ëlacístœ crónœ zhtoñnte~ oÎ te perì t3n gewmetrían kaì toù~ lógou~ kaì tà~ Álla~ paideía~, Ôson oÿdèn Êteron géno~ ën oÿdemi* tõn tecnõn. Cf. mikrà~ @formá~ in Arist. Cael. 292a 15. 107 Procl. In Eucl., 28.13–22 = Protr. fr. 5 Ross = C 52:2 Düring: tò mhdenò~ misqoñ prokeiménou to$~ zhtoñsin Ômw~ ën ölígœ crónœ tosaúthn ëpídosin t3n tõn maqhmátwn qewrían labe$n. 108 It is revealing that in Isocrates’ response to the Protrepticus it is mathematics that is in question (see below, 74f.). Another important parallel is the following passage in Plato: lightly esteemed as the studies in solid geometry are by the multitude and hampered by the ignorance of their students as to the true reasons for pursuing them, they nevertheless in the face of all these obstacles force their way ahead by their in- herent charm ( Res. 528b 6f. = Protr. C 55:1 Düring). Aristotle shifts the accent a little: at present mathematics and philosophy make more rapid progress than all the other técnai, though the studies in the latter are morally and materially stimulated, while those preoccupied with theoretical knowledge are rather hampered than en- couraged (see above, n. 105–107). 4. Why is mathematics useful? 71 4. Why is mathematics useful? Before going on to the second part of Archytas’ passage, let us note the obvious similarity of the ideas stated in it, not only to the Sophists’ theory of técnh and the Hippocratics’ notions of their own science, but also to Plato’s and Aris- totle’s views on theoretical knowledge. Archytas’ influence on Plato is beyond all doubt, 109 and so is Aristotle’s familiarity with Archytas’ works. 110 Of course, the classical theory of técnh was known to Plato and Aristotle independently of Archytas. His role as intermediary is more likely reflected in the fact that the passage from science as técnh to science as ëpist2mh took place under the decisive influence of the mathe¯mata in which, in his generation, Archytas was the major expert. Substituting themselves for técnh, the mathe¯mata became the standard toward which the Academy and the Lyceum were oriented while they created the new model of science as exact, certain, and irrefutable knowledge, i.e., ëpist2mh. From this point of view, Archytas as mathematician was far more important than Archytas as philosopher, the author of On Mathematical Sciences. Nevertheless, the influence of this work on the development of the new model of science cannot be ruled out completely. Unlike the first, methodological part of Archytas’ fragment B 3, its second Download 1.41 Mb. Do'stlaringiz bilan baham: |
Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling
ma'muriyatiga murojaat qiling