Mashinali o‘qitishga kirish Nosirov Xabibullo xikmatullo o‘gli Falsafa doktori (PhD), tret kafedrasi mudiri


Load the sample data. load('flu')


Download 1.54 Mb.
bet2/5
Sana02.01.2022
Hajmi1.54 Mb.
#194061
1   2   3   4   5
Bog'liq
Mashinali oqitishga kirish 10-maruza Nosirov Kh

Load the sample data.

load('flu')

The dataset array flu contains national CDC flu estimates, and nine separate regional estimates based on Google® query data.

Extract the response and predictor data.

Y = double(flu(:,2:end-1)); [n,d] = size(Y); x = flu.WtdILI;

The responses in Y are the nine regional flu estimates. Observations exist for every week over a one-year period, so n = 52. The dimension of the responses corresponds to the regions, so d = 9. The predictors in x are the weekly national flu estimates.

Multivariate regression model for panel data with different intercepts

Plot the flu data, grouped by region.

figure; regions = flu.Properties.VarNames(2:end-1); plot(x,Y,'x') legend(regions,'Location','NorthWest')

Multivariate regression model for panel data with different intercepts

Fit the multivariate regression model yij=αj+βxij+ϵij, where i=1,…,n and j=1,…,d, with between-region concurrent correlation COV(ϵij,ϵij)=σjj.


Download 1.54 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling