Matematika va informatika” ta’lim yo’nalishi s0603-21 guruh talabasi


Download 0.86 Mb.
bet2/9
Sana08.05.2023
Hajmi0.86 Mb.
#1446610
1   2   3   4   5   6   7   8   9
Bog'liq
88-mavzu Aniq integralning tadbiqlari. Inersiya momenti.

I Bob. Aniq integral tushunchasi

    1. Aniq integralni hisoblash qoidalari

Ixtiyoriy funksiya biror oraliqda berilgan bo`lib, u uzluksiz bo`lsin. oraliqda ta ketma- ket kuqtalar olamiz. U holda, bu nuqtalar oraliqni ta qismga ajratadi. Bunda va deb olamiz. Hosil bo`lgan elementar kesmalarni quyidagicha ifodalaymiz: y

kesmada da
da va hokazo, da
nuqta olamiz. U holda, quyidagi 0 x
yig`indi o`rinli bo`ladi:
(1)
yoki (2)
belgilashlar kiritamiz. U holda (1) va (2) ni quyidagicha yozish mumkin:
yoki
. (3) ga funksiyaning oraliqdagi integral yig`indisi deyiladi.
Ta`rif: funksiyaning kesmadag aniq integrali deb integral yig`indining elementar kesmalardan eng kattasining uzunligi bo`lgandagi limitiga aytiladi va quyidagi ko`rinishda ifodalanadi:
(4)
Bunda - integralning quyi, - yuqori chegarasidir. Integralning o`qilishi: «Integral dan gacha, ef iks de iks».
Agar funksiya oraliqda uzluksiz bo`lsa, u holda integral yig`indi chekli limitga ega bo`ladi, ya`ni qarralayotgan funksiya da integrallanuvchi bo`lib, integral yig`indining limiti oraliqning bo`linish usuliga va har bir elementar kesmadagi nuqtaning olinishiga bog`liq bo`lmaydi.
Misol. integralni ta`rif asosida hisoblang.
Yechilishi: Berilishiga ko`ra va oraliqni quyidagi nuqtalar yordamida ta teng elementar kesmalarga ajratamiz va berilgan funksiyaning ularga mos qiymatlarini topamiz:

U holda, integral yig`indining qo`shiluvchilari
Integral yig`indi quyidagicha bo`ladi:


U holda, Demak, kv. birl.

Download 0.86 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling