Measuring student knowledge and skills


m is called the circle’s: __________ Figure 2. Examples from Competency Class 1


Download 0.68 Mb.
Pdf ko'rish
bet52/94
Sana01.04.2023
Hajmi0.68 Mb.
#1317275
1   ...   48   49   50   51   52   53   54   55   ...   94
Bog'liq
measuring students\' knowledge

m
is called the circle’s: __________
Figure 2.
Examples from Competency Class 1
m
Solve the equation 7x – 3 = 13x + 15
What is the average of 7, 12, 8, 14, 15, 9?
Write 69% as a fraction
Line 
m
is called the circle’s: __________
Figure 2.
Examples from Competency Class 1
m


Mathematical Literacy
45
OECD 1999
The class relates to several of the mathematical skills mentioned above. It is clear that solving the
problems given in the example requires some reasoning or argumentation; hence it requires the use of
mathematical argumentation skills. Further, the students need to “model” the problem in order to solve it
– thus modelling skills are requiredThe problem solving itself requires problem-posing and problem-solving skills.
When in the process of solving the problem the students use various forms of representation – a table, a
chart or a drawing – this requires representation skills.
From the mathematical language point of view, decoding and interpreting symbolic and formal lan-
guage and understanding its relationship to natural language is another important skill in this class. Items
in this class are often placed within a context, and engage students in mathematical decision making.
Two example problems from this class are shown in Figure 3. Unlike the examples from Class 1, it is
not immediately clear to which curricular strand these questions belong, nor is it clear which method,
strategy or algorithm would be best used to solve the problem. In fact, in some cases the curricular strand
will depend upon the strategy which the student selects, and many alternative strategies may be equally
suitable.
Class 3 competencies: mathematical thinking, generalisation and insight
For items in this class, students are asked to “mathematise” situations, that is, to recognise and
extract the mathematics embedded in the situation and to use mathematics to solve the problem; to ana-
lyse; to interpret; to develop their own models and strategies and to present mathematical arguments,
including proofs and generalisations.
These competencies include an analysis of the model and reflection on the process. In this class of
competencies, students should not only be able to solve problems but also to pose problems.
All these competencies will function well only if students are able to communicate adequately in dif-
ferent ways: oral, written, visual, etc. Communication is regarded as a two-way process: students should
be able to communicate their mathematical ideas as well as to understand the mathematical communi-
cations of others.
Finally, it is important to stress that students also need insight into the nature of mathematics, includ-
ing cultural and historical elements, and the use of mathematics in other contexts and other curriculum
areas that are amenable to mathematical modelling.
The competencies in this class often incorporate skills and competencies from other classes.
This class is a central component of mathematical literacy. Unfortunately, however, it is the most dif-
ficult class to assess, particularly in large-scale surveys such as OECD/PISA. Multiple-choice items, for
example, are often not suitable for assessing these competencies. Extended-response questions with
multiple answers are more likely to be an appropriate format, but both the design of such items and the
Figure 3.

Download 0.68 Mb.

Do'stlaringiz bilan baham:
1   ...   48   49   50   51   52   53   54   55   ...   94




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling