Method of calculating the dimensions of greenhouse-type single slope watermaker by taking into account the accumulation of solar energy parnik tipidagi bir nishabli suv chuchutgichi o


Download 2.25 Mb.
bet12/57
Sana22.11.2023
Hajmi2.25 Mb.
#1794781
1   ...   8   9   10   11   12   13   14   15   ...   57
Bog'liq
Документ

Statement of the problem


Consider the static problem of thermoelasticity for isotropic bodies. It consists of the equilibrium equations [2] 3 ij
j1 xi X i  0, i 1,3 (1)
the constitutive relation of Dughamel-Neumann representing the relationship between stresses and strains taking into account temperature
    ij ij 2 ij 3 2  (T T0)ij (2)
Cauchy relations

  1. ui u j

ij  (  ) (3)

  1. xj xi

and boundary conditions

  1. ui 1 uio , ijnj 2  Sio (4) j1

where, corresponds to thermal expansion coefficient, ij stress tensor,ij strain tensor, ui displacement, Ttemperature, T0 initial temperature Xi volume force, , Lame constants, spherical part of strain tensor, nj - outward normal to surface 2 , S S S1, 2 , 3 - external load vector components, ij  delta Kronecker symbol and     (3 2 ).
The boundary value problem of thermoelasticity (1–4) can be reduced to a system of three
differential equations for displacements, i.e.
 2u 2u 2u   2v 2w  T

(2)x2 y2  z2 ()xy  xz x  0
 
 2v 2v  2v  2u 2w T

x2  z2 (2) y2 ()xy  yz y  0 (5)

x2w2  y2w2 ()x2uz  y2vz (2)z2w2 Tz  0.
 
Differential equations (5) can be considered with boundary conditions in displacements, stresses or mixed type. In our case, we consider a parallelepiped with a free boundary from loads, and the boundary conditions take the following form
 u v w 
11 x0,l1  (  2 ) x   y  z  (T T0) x0,l1  0

12x o l,1  uy xv x o l ,1  0  (6)
13x o l,1  u w 0 
z x x o l ,1  

 


22 y0,l2  ux (  2 ) yv  wz  (T T0) y0,l2  0
 

 v u  
21y o l,2  x y y o l ,2  0  (7)
 v w 
23y o l,2 z y y o l ,2  0   
33 z0,l3   ux  yv (  2 ) wz (T T0) z0,l3  0
 
31z o l,3  wx  uz z o l ,3  0 . (8)
 w v  
32z o l,3 y z z o l ,3  0 




Fig. 1.
where li , i 1,3–are the lengths of the edges of the considered parallelepiped.

Numerical implementation


Replacing the derivatives in the boundary value problem (5–8) with difference relations, one can find the basic difference equations [3]
ui1, ,j k 2ui j k, , ui1, ,j k ui j, 1, k 2ui j k, , ui j, 1, k ui j k, , 1 2ui j k, , ui j k, , 1 
( 2 )

  2  h1
vi 1, 1,j k vi 1, 1,j k vi 1, 1,j k vi 1, 1,j k

(  )   4hh1 2
Ti1, ,j k Ti1, ,j k
  0
2h1
2  2 
h2 h3 
wi1, ,j k1  wi1, ,j k1  wi1, ,j k1  wi1, ,j k1 
 (9)
4h1 3h
vi j k, , 1 2vi j k, , vi j k, , 1 

2  h3
w w

vi j, 1, k 2vi j k, , vi j, 1, k
( 2 )

vi1, ,j k 2vi j k, , vi1, ,j k

  2  2 h2  h1
u u u u w w

  i 1, 1,j k i 1, 1,j k i 1, 1,j k i 1, 1,j k  4hh1 2
Ti j, 1, k Ti j, 1, k
  0
2h2
i j, 1, 1 k i j, 1, 1 k i j, 1, 1 k i j, 1, 1 k (10)
4h h2 3

wi j k, , 1 2wi j k, ,  wi j k, , 1  wi1, ,j k 2wi j k, ,  wi1, ,j k wi j, 1, k 2wi j k, ,  wi j, 1, k

( 2 ) 2 2 2  h3  h1 h2 
ui1, ,j k1 ui1, ,j k1 ui1, ,j k1 ui1, ,j k1 vi j, 1, 1 k vi j, 1, 1 k vi j, 1, 1 k vi j, 1, 1 k
    (11)
 4hh1 3 4hh1 2
Ti j k, , 1 Ti j k, , 1
  0
2h3
boundary conditions (6)

( 2 ) u N( 1, , )j k u N( 1 1, ,j k) v N( 1, j 1,k)v N( 1, j 1,k) h1 2h
2 
w N( 1, ,j k 1) w N( 1, ,j k 1) 
 (TN1, j T0 )  0 
2h3

u N( 1, j 1,k)u N( 1, j 1,k) v N( 1, , )j k v N( 1 1, ,j k)   (12)
    0
 2h2 h1  
  u N( 1, ,j k 1)u N( 1, ,j k 1) w N( 1, , )j k w N( 1 1, ,j k)  

    0   2h3 h1  
The finite-difference equations for the boundary conditions (7) and (8) can be written in a similar way.
Solving equations (9–12) with respect to ui j k, , , vi j k, , , wi j k, , we can construct the following iterative process

(n1)  ui(n1), ,j k ui(n1), ,j k ui j(,n)1,k ui j(,n)1,k ui j k(, ,n) 1 ui j k(, ,n) 1   ui j k, , (  2 ) 2  2  2  

h1 h2 h3  

    


 4hh1 2 4h h2 3
Ti j, 1,k Ti j, 1,k  2(    2 ) 2 2 
 2h  /  h2  h2  h2 
2   2 1 3   w w w w w w
(n) (n) (n) (n) (n) (n)
(n1) i j k, , 1 i j k, , 1 i1, ,j k i1, ,j k i j, 1,k i j, 1,k
wi j k, ,  (  2 ) 2  2  2 
h3  h1 h2 
u(n) u(n) u(n) u(n) v(n) v(n) v(n) v(n)

 














    


 4hh1 2

T T  2(    2 ) 2 2   2h  /  h2  h2  h2 
i1, ,j k i1, ,j k
1   1 2 3
v(n) v(n)  v(n) v(n)
(n1) i j, 1,k i j, 1,k i1, ,j k i1, ,j k
vi j k, ,  (  2 ) 2  2
h2 h1
(n) (n) (n) (n) (n)

4hh1 3
(n) (n)
v v
i j k, , 1 2 i j k, , 1  h3
(n) (n)

(n)















u u u u w w w w  
( ) vi( n1), j 1,k vi( n1), j 1,k vi( n1), j 1,k vi( n1), j 1,k wi(n1), ,j k1  wi(n1), ,j k1  wi(n1), ,j k1  wi(n1), ,j k1  

i 1, j 1,k i 1, j 1,k i 1, j 1,k i 1, j 1,k i j,  1,k 1 i j,  1,k 1 i j,  1,k 1 i j,  1,k 1

  i1, ,j k1 i1, ,j k1 i1, ,j k1 i1, ,j k1  i j,  1,k 1 i j,  1,k 1 i j, 1,k1 i j,  1,k 1  
4hh1 3 4hh1 2   (13)

Ti j k, , 12hTi j k, , 1  / 2(   2 2 )  2 2  2 2  
   h3 h1 h3  

u (N , , )j k u (N 1, ,j k)

1 1   2  2h2
w(n) (N1, ,j k 1) w(n) (N1, ,j k 1) 
 (TN1, j T0 )
2h3 
h
v(n1) (N1, , )j k v(n) (N1 1, ,j k) 1 u(n) (N1, j 1,k)u(n) (N1, j 1,k) 2h2






 (14)




3   h  v(n) (N , j 1,k)v(n) (N , j 1,k)
(n1) (n) 1 1 1

(n1) (n) h1 (n) (n)  w (N1, , )j k w (N1 1, ,j k) 2h3 u (N1, ,j k 1)u (N1, ,j k 1) 
Equations (14) are written for a face of a parallelepiped at x l1 . For the rest of the faces, the
corresponding relations can be found in a similar way.

Download 2.25 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   ...   57




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©fayllar.org 2024
ma'muriyatiga murojaat qiling